Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(7): 112747, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405920

RESUMO

Replication forks terminate at TERs and telomeres. Forks that converge or encounter transcription generate topological stress. Combining genetics, genomics, and transmission electron microscopy, we find that Rrm3hPif1 and Sen1hSenataxin helicases assist termination at TERs; Sen1 specifically acts at telomeres. rrm3 and sen1 genetically interact and fail to terminate replication, exhibiting fragility at termination zones (TERs) and telomeres. sen1rrm3 accumulates RNA-DNA hybrids and X-shaped gapped or reversed converging forks at TERs; sen1, but not rrm3, builds up RNA polymerase II (RNPII) at TERs and telomeres. Rrm3 and Sen1 restrain Top1 and Top2 activities, preventing toxic accumulation of positive supercoil at TERs and telomeres. We suggest that Rrm3 and Sen1 coordinate the activities of Top1 and Top2 when forks encounter transcription head on or codirectionally, respectively, thus preventing the slowing down of DNA and RNA polymerases. Hence Rrm3 and Sen1 are indispensable to generate permissive topological conditions for replication termination.


Assuntos
DNA Helicases , RNA Helicases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA Topoisomerases Tipo II/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Methods Mol Biol ; 2528: 317-328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704201

RESUMO

RNA:DNA hybrids are generated naturally behind the elongating RNA polymerase as a transcriptional intermediate. However, prolonged persistence of these structures challenges the integrity of the genome by creating R-loops and by interfering with DNA replication and other chromatin related processes. Precise mapping and characterization of their distribution across the genome has been a major challenge to understand the genesis of RNA:DNA hybrids and their conversion into genotoxic intermediates. Here we provide the detailed protocol for mapping RNA:DNA hybrid across the Saccharomyces cerevisiae genome.


Assuntos
RNA , Saccharomyces cerevisiae , DNA/química , DNA/genética , Replicação do DNA , Estruturas R-Loop , RNA/química , RNA/genética , Saccharomyces cerevisiae/genética
4.
Nature ; 577(7792): 701-705, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969709

RESUMO

Transcription challenges the integrity of replicating chromosomes by generating topological stress and conflicts with forks1,2. The DNA topoisomerases Top1 and Top2 and the HMGB family protein Hmo1 assist DNA replication and transcription3-6. Here we describe the topological architecture of genes in Saccharomyces cerevisiae during the G1 and S phases of the cell cycle. We found under-wound DNA at gene boundaries and over-wound DNA within coding regions. This arrangement does not depend on Pol II or S phase. Top2 and Hmo1 preserve negative supercoil at gene boundaries, while Top1 acts at coding regions. Transcription generates RNA-DNA hybrids within coding regions, independently of fork orientation. During S phase, Hmo1 protects under-wound DNA from Top2, while Top2 confines Pol II and Top1 at coding units, counteracting transcription leakage and aberrant hybrids at gene boundaries. Negative supercoil at gene boundaries prevents supercoil diffusion and nucleosome repositioning at coding regions. DNA looping occurs at Top2 clusters. We propose that Hmo1 locks gene boundaries in a cruciform conformation and, with Top2, modulates the architecture of genes that retain the memory of the topological arrangements even when transcription is repressed.


Assuntos
DNA Fúngico/química , DNA Super-Helicoidal/química , Genes Fúngicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA Cruciforme/química , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Fase G1 , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Mutação , Hibridização de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Fases de Leitura Aberta/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , Fase S , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
5.
Cell ; 176(6): 1241-1243, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849368

RESUMO

Error-prone polymerases are alleged to induce mutations while replicating damaged DNA and to increase the risk of cancer. Using in vitro studies and mice models, Yoon et al. (2019) provide evidence that the error-prone Pol θ polymerase protects against ultraviolet light-induced skin cancer despite its mutagenic potential.


Assuntos
Neoplasias Cutâneas , Raios Ultravioleta , Animais , DNA Polimerase Dirigida por DNA/genética , Camundongos , Mutagênese , DNA Polimerase teta
6.
Nucleic Acids Res ; 46(3): 1227-1239, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29059325

RESUMO

The yeast RNA/DNA helicase Sen1, Senataxin in human, preserves the integrity of replication forks encountering transcription by removing RNA-DNA hybrids. Here we show that, in sen1 mutants, when a replication fork clashes head-on with transcription is arrested and, as a consequence, the progression of the sister fork moving in the opposite direction within the same replicon is also impaired. Therefore, sister forks remain coupled when one of the two forks is arrested by transcription, a fate different from that experienced by forks encountering Double Strand Breaks. We also show that dormant origins of replication are activated to ensure DNA synthesis in the proximity to the forks arrested by transcription. Dormant origin firing is not inhibited by the replication checkpoint, rather dormant origins are fired if they cannot be timely inactivated by passive replication. In sen1 mutants, the Mre11 and Mrc1-Ctf4 complexes protect the forks arrested by transcription from processing mediated by the Exo1 nuclease. Thus, a harmless head-on replication-transcription clash resolution requires the fine-tuning of origin firing and coordination among Sen1, Exo1, Mre11 and Mrc1-Ctf4 complexes.


Assuntos
DNA Helicases/genética , Replicação do DNA , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Regulação Fúngica da Expressão Gênica , RNA Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Mutação , Ligação Proteica , RNA Helicases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Adv Exp Med Biol ; 1042: 455-487, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29357070

RESUMO

DNA topological transitions occur when replication forks encounter other DNA transactions such as transcription. Failure in resolving such conflicts leads to generation of aberrant replication and transcription intermediates that might have adverse effects on genome stability. Cells have evolved numerous surveillance mechanisms to avoid, tolerate, and resolve such replication-transcription conflicts. Defects or non-coordination in such cellular mechanisms might have catastrophic effect on cell viability. In this chapter, we review consequences of replication encounters with transcription and its associated events, topological challenges, and how these inevitable conflicts alter the genome structure and functions.


Assuntos
Replicação do DNA/fisiologia , Transcrição Gênica/fisiologia , Animais , DNA/química , DNA/genética , DNA/metabolismo , DNA Topoisomerases/fisiologia , Instabilidade Genômica/fisiologia , Humanos
8.
Nucleic Acids Res ; 43(21): 10277-91, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26350214

RESUMO

Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/química , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
10.
Mol Cell ; 47(3): 396-409, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22704558

RESUMO

Completion of DNA replication after replication stress depends on PCNA, which undergoes monoubiquitination to stimulate direct bypass of DNA lesions by specialized DNA polymerases or is polyubiquitinated to promote recombination-dependent DNA synthesis across DNA lesions by template switching mechanisms. Here we report that the ZRANB3 translocase, a SNF2 family member related to the SIOD disorder SMARCAL1 protein, is recruited by polyubiquitinated PCNA to promote fork restart following replication arrest. ZRANB3 depletion in mammalian cells results in an increased frequency of sister chromatid exchange and DNA damage sensitivity after treatment with agents that cause replication stress. Using in vitro biochemical assays, we show that recombinant ZRANB3 remodels DNA structures mimicking stalled replication forks and disassembles recombination intermediates. We therefore propose that ZRANB3 maintains genomic stability at stalled or collapsed replication forks by facilitating fork restart and limiting inappropriate recombination that could occur during template switching events.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Instabilidade Genômica/fisiologia , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estresse Fisiológico/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Dano ao DNA/fisiologia , DNA Helicases/genética , Proteínas de Fluorescência Verde/genética , Humanos , Dados de Sequência Molecular , Osteossarcoma , Ligação Proteica/fisiologia , Recombinação Genética/fisiologia , Troca de Cromátide Irmã/fisiologia , Ubiquitinação/fisiologia
11.
Proc Natl Acad Sci U S A ; 108(34): 14073-8, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21795603

RESUMO

Human helicase-like transcription factor (HLTF) exhibits ubiquitin ligase activity for proliferating cell nuclear antigen (PCNA) polyubiquitylation as well as double-stranded DNA translocase activity for remodeling stalled replication fork by fork reversal, which can support damage bypass by template switching. However, a stalled replication fork is surrounded by various DNA-binding proteins which can inhibit the access of damage bypass players, and it is unknown how these proteins become displaced. Here we reveal that HLTF has an ATP hydrolysis-dependent protein remodeling activity, by which it can remove proteins bound to the replication fork. Moreover, we demonstrate that HLTF can displace a broad spectrum of proteins such as replication protein A (RPA), PCNA, and replication factor C (RFC), thereby providing the first example for a protein clearing activity at the stalled replication fork. Our findings clarify how remodeling of a stalled replication fork can occur if it is engaged in interactions with masses of proteins.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Replicação C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...