Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 26(12): 3503-3513, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32941146

RESUMO

Thermally modulated Nanophotonic Phased Arrays (NPAs) can be used as phase-only holographic displays. Compared to the holographic displays based on Liquid Crystal on Silicon Spatial Light Modulators (LCoS SLMs), NPAs have the advantage of integrated light source and high refresh rate. However, the formation of the desired wavefront requires accurate modulation of the phase which is distorted by the thermal proximity effect. This problem has been largely overlooked and existing approaches to similar problems are either slow or do not provide a good result in the setting of NPAs. We propose two new algorithms based on the iterative phase retrieval algorithm and the proximal algorithm to address this challenge. We have carried out computational simulations to compare and contrast various algorithms in terms of image quality and computational efficiency. This work is going to benefit the research on NPAs and enable the use of large-scale NPAs as holographic displays.

2.
Sci Rep ; 7(1): 16347, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180696

RESUMO

The structural and electronic properties of stanene/hexagonal boron nitride (Sn/h-BN) heterobilayer with different stacking patterns are studied using first principle calculations within the framework of density functional theory. The electronic band structure of different stacking patterns shows a direct band gap of ~30 meV at Dirac point and at the Fermi energy level with a Fermi velocity of ~0.53 × 106 ms-1. Linear Dirac dispersion relation is nearly preserved and the calculated small effective mass in the order of 0.05mo suggests high carrier mobility. Density of states and space charge distribution of the considered heterobilayer structure near the conduction and the valence bands show unsaturated π orbitals of stanene. This indicates that electronic carriers are expected to transport only through the stanene layer, thereby leaving the h-BN layer to be a good choice as a substrate for the heterostructure. We have also explored the modulation of the obtained band gap by changing the interlayer spacing between h-BN and Sn layer and by applying tensile biaxial strain to the heterostructure. A small increase in the band gap is observed with the increasing percentage of strain. Our results suggest that, Sn/h-BN heterostructure can be a potential candidate for Sn-based nanoelectronics and spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...