Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16358, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014107

RESUMO

This study aims to optimize and evaluate drug release kinetics of Modified-Release (MR) solid dosage form of Quetiapine Fumarate MR tablets by using the Artificial Neural Networks (ANNs). In training the neural network, the drug contents of Quetiapine Fumarate MR tablet such as Sodium Citrate, Eudragit® L100 55, Eudragit® L30 D55, Lactose Monohydrate, Dicalcium Phosphate (DCP), and Glyceryl Behenate were used as variable input data and Drug Substance Quetiapine Fumarate, Triethyl Citrate, and Magnesium Stearate were used as constant input data for the formulation of the tablet. The in-vitro dissolution profiles of Quetiapine Fumarate MR tablets at ten different time points were used as a target data. Several layers together build the neural network by connecting the input data with the output data via weights, these weights show importance of input nodes. The training process optimises the weights of the drug product excipients to achieve the desired drug release through the simulation process in MATLAB software. The percentage drug release of predicted formulation matched with the manufactured formulation using the similarity factor (f2), which evaluates network efficiency. The ANNs have enormous potential for rapidly optimizing pharmaceutical formulations with desirable performance characteristics.


Assuntos
Liberação Controlada de Fármacos , Redes Neurais de Computação , Comprimidos , Comprimidos/química , Excipientes/química , Preparações de Ação Retardada/química , Fumarato de Quetiapina/química , Fumarato de Quetiapina/farmacocinética , Fumarato de Quetiapina/administração & dosagem , Química Farmacêutica/métodos
2.
Adv Contin Discret Model ; 2022(1): 27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450198

RESUMO

This research paper designs the noninteger order SEITR dynamical model in the Caputo sense for tuberculosis. The authors of the article have classified the infection compartment into four different compartments such as newly infected unrecognized individuals, diagnosed patients, highly infected patients, and patients with delays in treatment which provide better detail of the TB infection dynamic. We estimate the model parameters using the least square curve fitting and demonstrate that the proposed model provides a good fit to tuberculosis confirmed cases of India from the year 2000 to 2020. Further, we compute the basic reproduction number as ℜ 0 ≈ 1.73 of the model using the next-generation matrix method and the model equilibria. The existence and uniqueness of the approximate solution for the SEITR model is validated using the generalized Adams-Bashforth-Moulton method. The graphical representation of the fractional order model is given to validate the result using the numerical simulation. We conclude that the fractional order model is more realistic than the classical integer order model and provide more detailed information about the real data of the TB disease dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...