Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 151: 113052, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35588576

RESUMO

Osteoarthritis (OA) is a musculoskeletal disorder mainly found in elderly individuals. Modern treatment of OA, like nonsteroidal anti-inflammatory drugs, corticosteroids, hyaluronic acid injections, etc., is linked to long-term side effects. We evaluated the anti-osteoarthritic properties of a novel joint health formula (JHF) containing Bisdemethoxycurcumin enriched curcumin, 3-O-Acetyl-11-keto-beta-Boswellic acid-enriched Boswellia, and Ashwagandha in monosodium iodoacetate (MIA)-induced knee OA in rats. Twenty-eight female rats were distributed into four groups: Control, OA, OA + JHF (100 mg/kg), and OA + JHF (200 mg/kg). JHF decreased the right joint diameters but increased the paw area and stride length compared to the OA group with no treatment. JHF significantly reduced the arthritic conditions after four weeks of supplementation (p < 0.05). JHF significantly decreased TNF-α, IL-1ß, IL-10, COMP, and CRP in the serum of osteoarthritic rats (p < 0.0001). We observed reduced lipid peroxidation but increased SOD, GSH-Px, and CAT activities in response to JHF treatment in OA animals. JHF down-regulated MMP-3, COX-2, and LOX-5 and improved the histological structure of the knee joint of osteoarthritic rats. JHF demonstrated a protective effect against osteoarthritis, possibly due to anti-inflammatory and antioxidant activity in experimentally induced osteoarthritis in rats, and could be an effective option in the management of OA.


Assuntos
Osteoartrite do Joelho , Animais , Anti-Inflamatórios/efeitos adversos , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Feminino , Ácido Iodoacético/efeitos adversos , Articulação do Joelho , Osteoartrite do Joelho/patologia , Ratos
2.
Antioxidants (Basel) ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34829562

RESUMO

Curcumin positively affects performance during exercise and subsequent recovery. However, curcumin has limited bioavailability unless consumed in larger doses. In the current study, we examined the impact of a new formulation of curcumin, Next-Generation Ultrasol Curcumin (NGUC), which is relatively more bioavailable than natural curcumin on exhaustion time, grip strength, muscle damage parameters, and serum and muscle proteins. A total of 28 rats were randomly grouped as control (C, non-supplemented), exercise (E, non-supplemented), E+NGUC100 (supplemented with 100 mg/kg BW NGUC), and E+NGUC200 (supplemented with 200 mg/kg NGUC). Grip strength and exhaustion time were increased with NGUC supplementation (p < 0.0001). Creatine kinase (CK), lactate dehydrogenase (LDH), lactic acid (LA), myoglobin, malondialdehyde (MDA) concentrations were reduced in serum, and muscle tissue in NGUC supplemented groups (p < 0.05). In contrast, NGUC supplementation elevated the antioxidant enzyme levels compared to the non-supplemented exercise group (p < 0.01). Additionally, inflammatory cytokines were inhibited with NGUC administration (p < 0.05). NGUC decreased PGC-1α, p-4E-BP1, p-mTOR, MAFbx, and MuRF1 proteins in muscle tissue (p < 0.05). These results indicate that NGUC boosts exercise performance while reducing muscle damage by targeting antioxidant, anti-inflammatory, and muscle mass regulatory pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...