Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; : e20453, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760906

RESUMO

Durum wheat (Triticum turgidum ssp. durum) is globally cultivated for pasta, couscous, and bulgur production. With the changing climate and growing world population, the need to significantly increase durum production to meet the anticipated demand is paramount. This review summarizes recent advancements in durum research, encompassing the exploitation of existing and novel genetic diversity, exploration of potential new diversity sources, breeding for climate-resilient varieties, enhancements in production and management practices, and the utilization of modern technologies in breeding and cultivar development. In comparison to bread wheat (T. aestivum), the durum wheat community and production area are considerably smaller, often comprising many small-family farmers, notably in African and Asian countries. Public breeding programs such as the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA) play a pivotal role in providing new and adapted cultivars for these small-scale growers. We spotlight the contributions of these and others in this review. Additionally, we offer our recommendations on key areas for the durum research community to explore in addressing the challenges posed by climate change while striving to enhance durum production and sustainability. As part of the Wheat Initiative, the Expert Working Group on Durum Wheat Genomics and Breeding recognizes the significance of collaborative efforts in advancing toward a shared objective. We hope the insights presented in this review stimulate future research and deliberations on the trajectory for durum wheat genomics and breeding.

2.
Sci Rep ; 12(1): 9629, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688907

RESUMO

Exploring the genetic variability in yield and yield-related traits is essential to continue improving genetic gains. Fifty-nine Argentinian durum wheat cultivars were analyzed for important agronomic traits in three field experiments. The collection was genotyped with 3565 genome-wide SNPs and functional markers in order to determine the allelic variation at Rht-B1 and Ppd-A1 genes. Population structure analyses revealed the presence of three main groups, composed by old, modern and genotypes with European or CIMMYT ancestry. The photoperiod sensitivity Ppd-A1b allele showed higher frequency (75%) than the insensitivity one Ppd-A1a (GS105). The semi-dwarfism Rht-B1b and the Ppd-A1a (GS105) alleles were associated with increases in harvest index and decreases in plant height, grain protein content and earlier heading date, although only the varieties carrying the Rht-B1 variants showed differences in grain yield. Out of the two main yield components, grain number per plant was affected by allelic variants at Rht-B1 and Ppd-A1 loci, while no differences were observed in thousand kernel weight. The increases in grain number per spike associated with Rht-B1b were attributed to a higher grain number per spikelet, whereas Ppd-A1a (GS105) was associated with higher grain number per spikelet, but also with lower spikelets per spike.


Assuntos
Genes de Plantas , Triticum , Alelos , Grão Comestível/genética , Genótipo , Fenótipo , Triticum/genética
3.
Methods Mol Biol ; 2481: 13-27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35641756

RESUMO

Based on case studies, in this chapter we discuss the extent to which the number and identity of quantitative trait loci (QTL) identified from genome-wide association studies (GWAS) are affected by curation and analysis of phenotypic data. The chapter demonstrates through examples the impact of (1) cleaning of outliers, and of (2) the choice of statistical method for estimating genotypic mean values of phenotypic inputs in GWAS. No cleaning of outliers resulted in the highest number of dubious QTL, especially at loci with highly unbalanced allelic frequencies. A trade-off was identified between the risk of false positives and the risk of missing interesting, yet rare alleles. The choice of the statistical method to estimate genotypic mean values also affected the output of GWAS analysis, with reduced QTL overlap between methods. Using mixed models that capture spatial trends, among other features, increased the narrow-sense heritability of traits, the number of identified QTL and the overall power of GWAS analysis. Cleaning and choosing robust statistical models for estimating genotypic mean values should be included in GWAS pipelines to decrease both false positive and false negative rates of QTL detection.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Frequência do Gene , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas
4.
BMC Genomics ; 22(1): 233, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33820546

RESUMO

BACKGROUND: Durum wheat (Triticum turgidum L. ssp. durum Desf. Husn) is the main staple crop used to make pasta products worldwide. Under the current climate change scenarios, genetic variability within a crop plays a crucial role in the successful release of new varieties with high yields and wide crop adaptation. In this study we evaluated a durum wheat collection consisting of 197 genotypes that mainly comprised a historical set of Argentinian germplasm but also included worldwide accessions. RESULTS: We assessed the genetic diversity, population structure and linkage disequilibrium (LD) patterns in this collection using a 35 K SNP array. The level of polymorphism was considered, taking account of the frequent and rare allelic variants. A total of 1547 polymorphic SNPs was located within annotated genes. Genetic diversity in the germplasm collection increased slightly from 1915 to 2010. However, a reduction in genetic diversity using SNPs with rare allelic variants was observed after 1979. However, larger numbers of rare private alleles were observed in the 2000-2009 period, indicating that a high reservoir of rare alleles is still present among the recent germplasm in a very low frequency. The percentage of pairwise loci in LD in the durum genome was low (13.4%) in our collection. Overall LD and the high (r2 > 0.7) or complete (r2 = 1) LD presented different patterns in the chromosomes. The LD increased over three main breeding periods (1915-1979, 1980-1999 and 2000-2020). CONCLUSIONS: Our results suggest that breeding and selection have impacted differently on the A and B genomes, particularly on chromosome 6A and 2A. The collection was structured in five sub-populations and modern Argentinian accessions (cluster Q4) which were clearly differentiated. Our study contributes to the understanding of the complexity of Argentinian durum wheat germplasm and to derive future breeding strategies enhancing the use of genetic diversity in a more efficient and targeted way.


Assuntos
Melhoramento Vegetal , Triticum , Alelos , Variação Genética , Genótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...