Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 9(10): 9665-77, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26302309

RESUMO

Chemical methods offer the possibility to synthesize a large panel of nanostructures of various materials with promising properties. One of the main limitations to a mass market development of nanostructure based devices is the integration at a moderate cost of nano-objects into smart architectures. Here we develop a general approach by adapting the seed-mediated solution phase synthesis of nanocrystals in order to directly grow them on crystalline thin films. Using a Co precursor, single-crystalline Co nanowires are directly grown on metallic films and present different spatial orientations depending on the crystalline symmetry of the film used as a 2D seed for Co nucleation. Using films exposing 6-fold symmetry surfaces such as Pt(111), Au(111), and Co(0001), the Co heterogeneous nucleation and epitaxial growth leads to vertical nanowires self-organized in dense and large scale arrays. On the other hand, using films presenting 4-fold symmetry surfaces such as Pt(001) and Cu(001), the Co growth leads to slanted wires in discrete directions. The generality of the concept is demonstrated with the use of a Fe precursor which results in Fe nanostructures on metallic films with different growth orientations which depend on the 6-fold/4-fold symmetry of the film. This approach of solution epitaxial growth combines the advantages of chemistry in solution in producing shape-controlled and monodisperse metallic nanocrystals, and of seeded growth on an ad hoc metallic film that efficiently controls orientation through epitaxy. It opens attractive opportunities for the integration of nanocrystals in planar devices.

2.
Nano Lett ; 14(6): 3481-6, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24828234

RESUMO

The implementation of nano-objects in numerous emerging applications often demands their integration in macroscopic devices. Here we present the bottom-up epitaxial solution growth of high-density arrays of vertical 5 nm diameter single-crystalline metallic cobalt nanowires on wafer-scale crystalline metal surfaces. The nanowires form regular hexagonal arrays on unpatterned metallic films. These hybrid heterostructures present an important perpendicular magnetic anisotropy and pave the way to a high density magnetic recording device, with capacities above 10 Terabits/in(2). This method bypasses the need of assembling and orientating free colloidal nanocrystals on surfaces. Its generalization to other materials opens new perspectives toward many applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...