Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37066188

RESUMO

Cancer cells frequently undergo metabolic reprogramming as a mechanism of resistance against chemotherapeutic drugs. Metabolomic profiling provides a direct readout of metabolic changes and can thus be used to identify these tumor escape mechanisms. Here, we introduce piTracer, a computational tool that uses multi-scale molecular networks to identify potential combination therapies from pre- and post-treatment metabolomics data. We first demonstrate piTracer’s core ability to reconstruct cellular cascades by inspecting well-characterized molecular pathways and previously studied associations between genetic variants and metabolite levels. We then apply a new gene ranking algorithm on differential metabolomic profiles from human breast cancer cells after glutaminase inhibition. Four of the automatically identified gene targets were experimentally tested by simultaneous inhibition of the respective targets and glutaminase. Of these combination treatments, two were be confirmed to induce synthetic lethality in the cell line. In summary, piTracer integrates the molecular monitoring of escape mechanisms into comprehensive pathway networks to accelerate drug target identification. The tool is open source and can be accessed at https://github.com/krumsieklab/pitracer .

2.
Clin Exp Metastasis ; 39(2): 345-362, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34921655

RESUMO

Metastasis is the primary cause of cancer related deaths due to the limited number of efficient druggable targets. Signatures of dysregulated cancer metabolism could serve as a roadmap for the determination of new treatment strategies. However, the metabolic signatures of metastatic cells remain vastly elusive. Our aim was to determine metabolic dysregulations associated with high metastatic potential in breast cancer cell lines. We have selected 5 triple negative breast cancer (TNBC) cell lines including three with high metastatic potential (HMP) (MDA-MB-231, MDA-MB-436, MDA-MB-468) and two with low metastatic potential (LMP) (BT549, HCC1143). The normal epithelial breast cell line (hTERT-HME1) was also investigated. The untargeted metabolic profiling of cells and growth media was conducted and total of 479 metabolites were quantified. First we characterized metabolic features differentiating TNBC cell lines from normal cells as well as identified cell line specific metabolic fingerprints. Next, we determined 92 metabolites in cells and 22 in growth medium that display significant differences between LMP and HMP. The HMP cell lines had elevated level of molecules involved in glycolysis, TCA cycle and lipid metabolism. We identified metabolic advantages of cell lines with HMP beyond enhanced glycolysis by pinpointing the role of branched chain amino acids (BCAA) catabolism as well as molecules supporting coagulation and platelet activation as important contributors to the metastatic cascade. The landscape of metabolic dysregulations, characterized in our study, could serve as a roadmap for the identification of treatment strategies targeting cancer cells with enhanced metastatic potential.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Humanos , Neoplasias de Mama Triplo Negativas/patologia
3.
Metabolites ; 11(2)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572513

RESUMO

Equine performance in endurance racing depends on the interplay between physiological and metabolic processes. However, there is currently no parameter for estimating the readiness of animals for competition. Our objectives were to provide an in-depth characterization of metabolic consequences of endurance racing and to establish a metabolic performance profile for those animals. We monitored metabolite composition, using a broad non-targeted metabolomics approach, in blood plasma samples from 47 Arabian horses participating in endurance races. The samples were collected before and after the competition and a total of 792 metabolites were measured. We found significant alterations between before and after the race in 417 molecules involved in lipids and amino acid metabolism. Further, even before the race starts, we found metabolic differences between animals who completed the race and those who did not. We identified a set of six metabolite predictors (imidazole propionate, pipecolate, ethylmalonate, 2R-3R-dihydroxybutyrate, ß-hydroxy-isovalerate and X-25455) of animal performance in endurance competition; the resulting model had an area under a receiver operating characteristic (AUC) of 0.92 (95% CI: 0.85-0.98). This study provides an in-depth characterization of metabolic alterations driven by endurance races in equines. Furthermore, we showed the feasibility of identifying potential metabolic signatures as predictors of animal performance in endurance competition.

4.
Metabolites ; 10(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605263

RESUMO

BACKGROUND: Dysregulated cancer metabolism is associated with acquired resistance to chemotherapeutic treatment and contributes to the activation of cancer survival mechanisms. However, which metabolic pathways are activated following treatment often remains elusive. The combination of chicken embryo tumor models (in ovo) with metabolomics phenotyping could offer a robust platform for drug testing. Here, we assess the potential of this approach in the treatment of an in ovo triple negative breast cancer with doxorubicin. METHODS: MB-MDA-231 cells were grafted in ovo. The resulting tumors were then treated with doxorubicin or dimethyl sulfoxide (DMSO) for six days. Tumors were collected and analyzed using a global untargeted metabolomics and comprehensive lipidomics. RESULTS: We observed a significant suppression of tumor growth in the doxorubicin treated group. The metabolic profiles of doxorubicin and DMSO-treated tumors were clearly separated in a principle component analysis. Inhibition of glycolysis, nucleotide synthesis, and glycerophospholipid metabolism appear to be triggered by doxorubicin treatment, which could explain the observed suppressed tumor growth. In addition, metabolic cancer survival mechanisms could be supported by an acceleration of antioxidative pathways. CONCLUSIONS: Metabolomics in combination with in ovo tumor models provide a robust platform for drug testing to reveal tumor specific treatment targets such as the antioxidative tumor capacity.

5.
Front Oncol ; 9: 285, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058086

RESUMO

Sanguinarine (SNG), a benzophenanthridine alkaloid, has displayed various anticancer abilities in several vivo and in vitro studies. However, the anticancer potential of SNG is yet to be established in multiple myeloma (MM), a mostly incurable malignancy of plasma cells. In this study, we aimed to investigate the potential anti-proliferative and pro-apoptotic activities of SNG in a panel of MM cell lines (U266, IM9, MM1S, and RPMI-8226). SNG treatment of MM cells resulted in a dose-dependent decrease in cell viability through mitochondrial membrane potential loss and activation of caspase 3, 9, and cleavage of PARP. Pre-treatment of MM cells with a universal caspase inhibitor, Z-VAD-FMK, prevented SNG mediated loss of cell viability, apoptosis, and caspase activation, confirming that SNG-mediated apoptosis is caspase-dependent. The SNG-mediated apoptosis appears to be resulted from suppression of the constitutively active STAT3 with a concomitant increase in expression of protein tyrosine phosphatase (SHP-1). SNG treatment of MM cells leads to down-regulation of the anti-apoptotic proteins including cyclin D, Bcl-2, Bclxl, and XIAP. In addition, it also upregulates pro-apoptotic protein, Bax. SNG mediated cellular DNA damage in MM cell lines by induction of oxidative stress through the generation of reactive oxygen species and depletion of glutathione. Finally, the subtoxic concentration of SNG enhanced the cytotoxic effects of anticancer drugs bortezomib (BTZ) by suppressing the viability of MM cells via induction of caspase-mediated apoptosis. Altogether our findings demonstrate that SNG induces mitochondrial and caspase-dependent apoptosis, generates oxidative stress, and suppresses MM cell lines proliferation. In addition, co-treatment of MM cell lines with sub-toxic doses of SNG and BTZ potentiated the cytotoxic activity. These results would suggest that SNG could be developed into therapeutic agent either alone or in combination with other anticancer drugs in MM.

6.
J Transl Med ; 16(1): 96, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642900

RESUMO

Cisplatin is a widely used chemotherapeutic agent for treatment of various cancers. However, treatment with cisplatin is associated with drug resistance and several adverse side effects such as nephrotoxicity, reduced immunity towards infections and hearing loss. A Combination of cisplatin with other drugs is an approach to overcome drug resistance and reduce toxicity. The combination therapy also results in increased sensitivity of cisplatin towards cancer cells. The mitogen activated protein kinase (MAPK) pathway in the cell, consisting of extracellular signal regulated kinase, c-Jun N-terminal kinase, p38 kinases, and downstream mediator p90 ribosomal s6 kinase (RSK); is responsible for the regulation of various cellular events including cell survival, cell proliferation, cell cycle progression, cell migration and protein translation. This review article demonstrates the role of MAPK pathway in cisplatin based therapy, illustrates different combination therapy involving cisplatin and also shows the importance of targeting MAPK family, particularly RSK, to achieve increased anticancer effect and overcome drug resistance when combined with cisplatin.


Assuntos
Cisplatino/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular
7.
Future Med Chem ; 10(8): 961-976, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620447

RESUMO

Natural products have been gaining recognition and are becoming a significant part of research in the area of drug development and discovery. Phytochemicals derived from these sources have been comprehensively studied and have displayed a wide range of activities against many fatal diseases including cancer. One such product that has gained recognition from its pharmacological properties and nontoxic nature is embelin, obtained from Embelia ribes. Amid all the vivid pharmacological activities, embelin has gained its prominence in the area of cancer research. Embelin binds to the BIR3 domain of XIAP, preventing the association of XIAP and caspase-9 resulting in the suppression of cell growth, proliferation and migration of various types of cancer cells. Furthermore, embelin modulates anti-apoptotic pathways by suppressing the activity of NF-κB, PI3-kinase/AKT, JAK/STAT pathway - among others. The present review summarizes the various reported effects of embelin on different types of cancer cells and highlights the cellular mechanisms of action.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Benzoquinonas/química , Benzoquinonas/farmacologia , Embelia/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzoquinonas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
8.
Mol Cancer ; 17(1): 31, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29455667

RESUMO

Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies.


Assuntos
Produtos Biológicos/uso terapêutico , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Neoplasias Hematológicas/enzimologia , Humanos , Transdução de Sinais/efeitos dos fármacos
9.
Leuk Lymphoma ; 59(5): 1051-1063, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28797197

RESUMO

S-phase kinase-associated protein 2 (SKP2) is a well-studied F-box protein and a critical part of the Skp1-Cul1-Fbox (SCF) E3 ligase complex. It controls cell cycle by regulating the expression level of p27 and p21 through ubiquitination and proteasomal degradation. SKP2-mediated loss of p27Kip1 is associated with poor clinical outcome in various types of cancers including hematological malignancies. It is however well established that SKP2 is an oncogene, and its targeting may be an attractive therapeutic strategy for the management of hematological malignancies. In this article, we have highlighted the recent findings from our group and other investigators regarding the role of SKP2 in the pathogenesis of hematological malignancies.


Assuntos
Neoplasias Hematológicas/fisiopatologia , Proteínas Quinases Associadas a Fase S/metabolismo , Humanos , Prognóstico , Proto-Oncogene Mas
10.
Front Physiol ; 9: 1942, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30728783

RESUMO

The ability of epithelial cells to organize through cell-cell adhesion into a functioning epithelium serves the purpose of a tight epithelial protective barrier. Contacts between adjacent cells are made up of tight junctions (TJ), adherens junctions (AJ), and desmosomes with unique cellular functions and a complex molecular composition. These proteins mediate firm mechanical stability, serves as a gatekeeper for the paracellular pathway, and helps in preserving tissue homeostasis. TJ proteins are involved in maintaining cell polarity, in establishing organ-specific apical domains and also in recruiting signaling proteins involved in the regulation of various important cellular functions including proliferation, differentiation, and migration. As a vital component of the epithelial barrier, TJs are under a constant threat from proinflammatory mediators, pathogenic viruses and bacteria, aiding inflammation and the development of disease. Inflammatory bowel disease (IBD) patients reveal loss of TJ barrier function, increased levels of proinflammatory cytokines, and immune dysregulation; yet, the relationship between these events is partly understood. Although TJ barrier defects are inadequate to cause experimental IBD, mucosal immune activation is changed in response to augmented epithelial permeability. Thus, the current studies suggest that altered barrier function may predispose or increase disease progression and therapies targeted to specifically restore the barrier function may provide a substitute or supplement to immunologic-based therapies. This review provides a brief introduction about the TJs, AJs, structure and function of TJ proteins. The link between TJ proteins and key signaling pathways in cell proliferation, transformation, and metastasis is discussed thoroughly. We also discuss the compromised intestinal TJ integrity under inflammatory conditions, and the signaling mechanisms involved that bridge inflammation and cancer.

11.
PLoS One ; 12(7): e0180895, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704451

RESUMO

The X-linked inhibitor of apoptosis (XIAP) is a viable molecular target for anticancer drugs that overcome apoptosis-resistance of malignant cells. XIAP is an inhibitor of apoptosis, mediating through its association with BIR3 domain of caspase 9. Embelin, a quinone derivative isolated from the Embelia ribes plant, has been shown to exhibit chemopreventive, anti-inflammatory, and apoptotic activities via inhibiting XIAP activity. In this study, we found that embelin causes a dose-dependent suppression of proliferation in leukemic cell lines K562 and U937. Embelin mediated inhibition of proliferation correlates with induction of apoptosis. Furthermore, embelin treatment causes loss of mitochondrial membrane potential and release of cytochrome c, resulting in subsequent activation of caspase-3 followed by polyadenosin-5'-diphosphate-ribose polymerase (PARP) cleavage. In addition, embelin treatment of leukemic cells results in a decrease of constitutive phosphorylations/activation level of AKT and downregulation of XIAP. Gene silencing of XIAP and AKT expression showed a link between XIAP expression and activated AKT in leukemic cells. Interestingly, targeting of XIAP and PI3-kinase/AKT signaling augmented inhibition of proliferation and induction of apoptosis in leukemic cells. Altogether these findings raise the possibility that embelin alone or in combination with inhibitors of PI3-kinase/AKT pathway may have therapeutic usage in leukemia and possibly other malignancies with up-regulated XIAP pathway.


Assuntos
Benzoquinonas/farmacologia , Cromonas/farmacologia , Leucemia/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Leucemia/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Future Med Chem ; 9(9): 933-950, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28636454

RESUMO

Sanguinarine (Sang) - a benzophenanthridine alkaloid extracted from Sanguinaria canadensis - exhibits antioxidant, anti-inflammatory, proapoptotic and growth inhibitory activities on tumor cells of various cancer types as established by in vivo and in vitro studies. Although the underlying mechanism of Sang antitumor activity is yet to be fully elucidated, Sang has displayed multiple biological effects, which remain to suggest its possible use in plant-derived treatments of human malignancies. This review covers the anticancer abilities of Sang including inhibition of aberrantly activated signal transduction pathways, induction of cell death and inhibition of cancer cell proliferation. It also highlights Sang-mediated inhibition of angiogenesis, inducing the expression of tumor suppressors, sensitization of cancer cells to standard chemotherapeutics to enhance their cytotoxic effects, while addressing the present need for further pharmacokinetic-based studies.


Assuntos
Antineoplásicos/farmacologia , Benzofenantridinas/farmacologia , Isoquinolinas/farmacologia , Antineoplásicos/química , Benzofenantridinas/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoquinolinas/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...