Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 2802-2805, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268900

RESUMO

Electrode arrays for recording and stimulation in the central nervous system have enabled numerous advances in basic science and therapeutic strategies. In particular, micro-fabricated arrays with precision size and spacing offer the benefit of accessing single neurons and permit mapping of neuronal function. Similar advances are envisioned toward understanding the autonomic nervous system and developing therapies based on its modulation, but appropriate electrode arrays are lacking. Here, we present for the first time, a multi-channel electrode array suitable for penetration of peripheral nerves having diameters as small as 0.1mm, and demonstrate performance in vivo. These arrays have the potential to access multiple discrete nerve fibers in small nerves. We fabricated and characterized five-channel arrays and obtained preliminary recordings of activity when penetrating rat carotid sinus nerve. The electrodes were constructed using hybrid microfabrication processes. The individual electrode shafts are as small as 0.01mm in diameter and at its tip each has a defined site that is addressable via a standard electronic connector. In addition to acute in vivo results, we evaluate the device by electrochemical impedance spectroscopy. Having established the fabrication method, our next steps are to incorporate the arrays into an implantable configuration for chronic studies, and here we further describe concepts for such a device.


Assuntos
Vias Autônomas/fisiologia , Microtecnologia/instrumentação , Animais , Vias Autônomas/citologia , Seio Carotídeo/inervação , Espectroscopia Dielétrica , Masculino , Microeletrodos , Fibras Nervosas/fisiologia , Neurônios/citologia , Ratos
2.
Sci Rep ; 5: 9669, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25982506

RESUMO

Due to the limited regenerative ability of neural tissue, a diverse set of biochemical and biophysical cues for increasing nerve growth has been investigated, including neurotrophic factors, topography, and electrical stimulation. In this report, we explore optogenetic control of neurite growth as a cell-specific alternative to electrical stimulation. By investigating a broad range of optical stimulation parameters on dorsal root ganglia (DRGs) expressing channelrhodopsin 2 (ChR2), we identified conditions that enhance neurite outgrowth by three-fold as compared to unstimulated or wild-type (WT) controls. Furthermore, optogenetic stimulation of ChR2 expressing DRGs induces directional outgrowth in WT DRGs co-cultured within a 10 mm vicinity of the optically sensitive ganglia. This observed enhancement and polarization of neurite growth was accompanied by an increased expression of neural growth and brain derived neurotrophic factors (NGF, BDNF). This work highlights the potential for implementing optogenetics to drive nerve growth in specific cell populations.


Assuntos
Luz , Regeneração Nervosa , Neurogênese , Animais , Técnicas de Cultura de Células , Channelrhodopsins , Técnicas de Cocultura , Gânglios Espinais/fisiologia , Gânglios Espinais/efeitos da radiação , Expressão Gênica , Genes Reporter , Camundongos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neuritos/fisiologia , Estimulação Física , Células de Schwann/fisiologia , Células de Schwann/efeitos da radiação
3.
Biomed Microdevices ; 16(5): 727-36, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24907052

RESUMO

While many advanced liver models support hepatic phenotypes necessary for drug and disease studies, these models are characterized by intricate features such as co-culture with one of more supporting cell types or advanced media perfusion systems. These systems have helped elucidate some of the critical biophysical features missing from standard well-plate based hepatocyte culture, but their advanced designs add to their complexity. Additionally, regardless of the culture system, primary hepatocyte culture systems suffer from reproducibility issues due to phenotypic variation and expensive, limited supplies of donor lots. Here we describe a microfluidic bilayer device that sustains primary human hepatocyte phenotypes, including albumin production, factor IX production, cytochrome P450 3A4 drug metabolism and bile canaliculi formation for at least 14 days in a simple monoculture format with static media. Using a variety of channel architectures, we describe how primary cell phenotype is promoted by spatial confinement within the microfluidic channel, without the need for perfusion or co-culture. By sourcing human hepatocytes expanded in the Fah, Rag2, and Il2rg-knockout (FRG™-KO) humanized mouse model, utilizing a few hundred hepatocytes within each channel, and maintaining hepatocyte function for weeks in vitro within a relatively simple model, we demonstrate a basic primary human hepatocyte culture system that addresses many of the major hurdles in human hepatocyte culture research.


Assuntos
Técnicas de Cultura de Células , Proliferação de Células , Hepatócitos/metabolismo , Fígado , Técnicas Analíticas Microfluídicas , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Hep G2 , Hepatócitos/citologia , Humanos , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
4.
Lab Chip ; 13(4): 542-53, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23108480

RESUMO

In this work, we describe the fabrication and working of a modular microsystem that recapitulates the functions of the "Neurovascular Unit". The microdevice comprised a vertical stack of a poly(dimethylsiloxane) (PDMS) neural parenchymal chamber separated by a vascular channel via a microporous polycarbonate (PC) membrane. The neural chamber housed a mixture of neurons (~4%), astrocytes (~95%), and microglia (~1%). The vascular channel was lined with a layer of rat brain microvascular endothelial cell line (RBE4). Cellular components in the neural chamber and vascular channel showed viability (>90%). The neural cells fired inhibitory as well as excitatory potentials following 10 days of culture. The endothelial cells showed diluted-acetylated low density lipoprotein (dil-a-LDL) uptake, expressed von Willebrand factor (vWF) and zonula occludens (ZO-1) tight junctions, and showed decreased Alexafluor™-conjugated dextran leakage across their barriers significantly compared with controls (p < 0.05). When the vascular layer was stimulated with TNF-α for 6 h, about 75% of resident microglia and astrocytes on the neural side were activated significantly (p < 0.05 compared to controls) recapitulating tissue-mimetic responses resembling neuroinflammation. The impact of this microsystem lies in the fact that this biomimetic neurovascular platform might not only be harnessed for obtaining mechanistic insights for neurodegenerative disorders, but could also serve as a potential screening tool for central nervous system (CNS) therapeutics in toxicology and neuroinfectious diseases.


Assuntos
Encéfalo/irrigação sanguínea , Técnicas de Cocultura , Células Endoteliais/fisiologia , Técnicas Analíticas Microfluídicas , Microvasos/fisiologia , Animais , Encéfalo/citologia , Diferenciação Celular , Forma Celular , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura/instrumentação , Células Endoteliais/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Microvasos/citologia , Neurônios/citologia , Ratos
5.
Macromol Biosci ; 10(8): 872-80, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20503195

RESUMO

Vapor-deposited silicone coatings are attractive candidates for providing insulation in neuroprosthetic devices owing to their excellent resistivity, adhesion, chemical inertness and flexibility. A biocompatibility assessment of these coatings is an essential part of the materials design process, but current techniques are limited to rudimentary cell viability assays or animal muscle implantation tests. This article describes how a recently developed in vitro model of glial scar formation can be utilized to assess the biocompatibility of vapor-deposited silicone coatings on micron-scale wires. A multi-cellular monolayer comprising mixed glial cells was obtained by culturing primary rat midbrain cells on poly(D-lysine)-coated well plates. Stainless steel microwires were coated with two novel insulating thin film silicone polymers, namely poly(trivinyltrimethylcyclotrisiloxane) (polyV(3)D(3)) and poly(trivinyltrimethylcyclotrisiloxane-hexavinyldisiloxane) (polyV(3)D(3)-HVDS) by initiated chemical vapor deposition (iCVD). The monolayer of midbrain cells was disrupted by placing segments of coated microwires into the culture followed by immunocytochemical analysis after 7 d of implantation. Microglial proximity to the microwires was observed to correlate with the amount of fibronectin adsorbed on the coating surface; polyV(3)D(3)-HVDS adsorbed the least amount of fibronectin compared to both stainless steel and polyV(3)D(3). Consequently, the relative number of microglia within 100 µm of the microwires was least on polyV(3)D(3)-HVDS coatings compared to steel and polyV(3)D(3). In addition, the astrocyte reactivity on polyV(3)D(3)-HVDS coatings was lower compared to stainless steel and polyV(3)D(3). The polyV(3)D(3)-HVDS coating was therefore deemed to be most biocompatible, least reactive and most preferable insulating coating for neural prosthetic devices.


Assuntos
Materiais Biocompatíveis , Microglia/metabolismo , Polímeros , Silicones , Adsorção , Animais , Feminino , Fibronectinas/metabolismo , Imunofluorescência , Corantes Fluorescentes , Imuno-Histoquímica , Técnicas In Vitro , Gravidez , Ratos , Ratos Endogâmicos F344 , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Langmuir ; 26(6): 4160-7, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20214394

RESUMO

Occlusion or blockage of silicone shunts utilized in the treatment of hydrocephalus is a major challenge that is currently addressed by multiple shunt replacements. Shunt occlusion is caused by the adhesion and proliferation of reactive cells, such as glial and vascular cells, into the lumen of the catheter and on valve components. This in vitro study describes how the adhesive behavior of four human cell types on poly(dimethylsiloxane) (PDMS) surfaces can be suppressed by functionalization with trypsin, a proteolytic enzyme. The covalently conjugated trypsin retained its proteolytic activity and acted in a dose-dependent manner. Trypsin-modified PDMS surfaces supported significantly lower adhesion of normal human astrocytes, human microglia, human dermal fibroblasts, and human umbilical vein endothelial cells compared to unmodified PDMS surfaces (p < 0.0001). Immunofluorescence imaging of cellular fibronectin and quantitative adsorption experiments with serum components indicated that the PDMS surfaces immobilized with trypsin inhibited surface remodeling by all cell types and resisted protein adsorption. The impact of this work lies in the recognition that the well-known proteolytic characteristics of trypsin can be harnessed by covalent surface immobilization to suppress cell adhesion and protein adsorption.


Assuntos
Adesão Celular , Dimetilpolisiloxanos , Enzimas Imobilizadas , Tripsina , Adsorção , Proteínas Sanguíneas/química , Células Cultivadas , Imunofluorescência , Humanos
7.
Front Neuroeng ; 2: 18, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20161810

RESUMO

Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years) due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device-nervous system interface and central nervous system implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration toward novel technologies to address the complexities associated with long-term neuroprosthetic device performance.

8.
Biotechnol Prog ; 25(1): 227-34, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19224594

RESUMO

Immobilized extracellular matrix proteins and neurotrophins have been extensively studied to enhance neuronal adhesion and proliferation on surfaces for applications in nerve tissue engineering and neuroprosthetic devices. This article describes how the coimmobilization of laminin, an extracellular matrix protein and nerve growth factor (NGF), a neurotrophin can enhance neurite outgrowth observed separately with each type of molecule. In the absence of immobilized NGF, PC12 neurite outgrowth is influenced strongly by the presence of NGF in solution and unaffected by significant increases in laminin surface density (18.7-93.5 ng/mm(2)). However, when both laminin and NGF are immobilized together, the surface density of laminin is an important factor in determining whether or not the neurite outgrowth-promoting effect of NGF can be obtained. PC12 neurite outgrowth on surfaces with coimmobilized laminin and NGF with surface densities of 27.6 ng/mm(2) and 1.4 ng/mm(2), respectively, are similar to that observed on surfaces with immobilized laminin and dissolved NGF.


Assuntos
Laminina/farmacologia , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Laminina/química , Fator de Crescimento Neural/química , Ratos
9.
Macromolecules ; 42(6): 1970-1978, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21359171

RESUMO

Poly (trivinyl-trimethyl-cyclotrisiloxane) or polyV(3)D(3) is a promising insulating thin film known for its potential application in neural probe fabrication. However, its time-consuming synthesis rate renders it impractical for manufacturing standards. Previously, the growth mechanism of polyV(3)D(3) was shown to be affected by significant steric barriers. This article describes the synthesis of a copolymer of polyV(3)D(3) via initiated chemical vapor deposition (iCVD) using V(3)D(3) as the monomer, hexavinyl disiloxane (HVDS) as a spacer, and tert-butyl peroxide (TBP) as the initiator to obtain nearly a 4-fold increase in deposition rate. The film formation kinetics is limited by the adsorption of the reactive species on the surface of the substrate with an activation energy of -41.5 kJ/mol with respect to substrate temperature. The films deposited are insoluble in polar and non polar solvents due to their extremely crosslinked structure. They have excellent adhesion to silicon substrates and their adhesion properties are retained after soaking in a variety of solvents. Spectroscopic evidence shows that the films do not vary in structure after boiling in DI water for 1 hour, illustrating hydrolytic stability. PolyV(3)D(3)-HVDS has a bulk resistivity of 5.6 (±1) × 10(14) Ω-cm, which is comparable to that of parylene-C; the insulating thin film currently used in neuroprosthetic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...