Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 230: 36-44, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28843429

RESUMO

A statistical analysis of circa 20,000 X-ray structures evidenced the effects of temperature of data collection on protein intramolecular distances and degree of compaction. Identical chains with data collected at cryogenic ultralow temperatures (≤160K) showed a radius of gyration (Rg) significantly smaller than at moderate temperatures (≥240K). Furthermore, the analysis revealed the existence of structures with a Rg significantly smaller than expected for cryogenic temperatures. In these ultracompact cases, the unusually small Rg could not be specifically attributed to any experimental parameter or crystal features. Ultracompaction involves most atoms and results in their displacement toward the center of the molecule. Ultracompact structures on average have significantly shorter van der Waals and hydrogen bonds than expected for ultralow temperature structures. In addition, the number of van der Waals contacts was larger in ultracompact than in ultralow temperature structures. The structure of these ultracompact states was analyzed in detail and the implication and possible causes of the phenomenon are discussed.


Assuntos
Proteínas/química , Animais , Bovinos , Quimotripsina/química , Ciclinas/química , Bases de Dados de Proteínas , Fator VII/química , Antígenos HLA-DR/química , Humanos , Ligação de Hidrogênio , Estrutura Terciária de Proteína , Eletricidade Estática , Temperatura , Tripsina/química , Microglobulina beta-2/química
2.
J Struct Funct Genomics ; 14(4): 145-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24241823

RESUMO

Sterol carrier protein 2 (SCP2), a small intracellular domain present in all forms of life, binds with high affinity a broad spectrum of lipids. Due to its involvement in the metabolism of long-chain fatty acids and cholesterol uptake, it has been the focus of intense research in mammals and insects; much less characterized are SCP2 from other eukaryotic cells and microorganisms. We report here the X-ray structure of Yarrowia lipolytica SCP2 (YLSCP2) at 2.2 Å resolution in complex with palmitic acid. This is the first fungal SCP2 structure solved, and it consists of the canonical five-stranded ß-sheet covered on the internal face by a layer of five α-helices. The overall fold is conserved among the SCP2 family, however, YLSCP2 is most similar to the SCP2 domain of human MFE-2, a bifunctional enzyme acting on peroxisomal ß-oxidation. We have identified the common structural elements defining the shape and volume of the large binding cavity in all species characterized. Moreover, we found that the cavity of the SCP2 domains is distinctly formed by carbon atoms, containing neither organized water nor rigid polar interactions with the ligand. These features are in contrast with those of fatty acid binding proteins, whose internal cavities are more polar and contain bound water. The results will help to design experiments to unveil the SCP2 function in very different cellular contexts and metabolic conditions.


Assuntos
Proteínas de Transporte/química , Evolução Molecular , Proteínas Fúngicas/química , Lipídeos/química , Modelos Moleculares , Yarrowia/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática
3.
Protein Sci ; 21(7): 964-76, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22496053

RESUMO

ß-lactamases confer antibiotic resistance, one of the most serious world-wide health problems, and are an excellent theoretical and experimental model in the study of protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class-A ß-lactamase with three tryptophan residues located in the protein core. Here, we report the 1.7-Å resolution X-ray structure, catalytic parameters, and thermodynamic stability of ESP(ΔW), an engineered mutant of ESP in which phenylalanine replaces the wild-type tryptophan residues. The structure revealed no qualitative conformational changes compared with thirteen previously reported structures of B. licheniformis ß-lactamases (RMSD = 0.4-1.2 Å). However, a closer scrutiny showed that the mutations result in an overall more compact structure, with most atoms shifted toward the geometric center of the molecule. Thus, ESP(ΔW) has a significantly smaller radius of gyration (R(g)) than the other B. licheniformis ß-lactamases characterized so far. Indeed, ESP(ΔW) has the smallest R(g) among 126 Class-A ß-lactamases in the Protein Data Bank (PDB). Other measures of compactness, like the number of atoms in fixed volumes and the number and average of noncovalent distances, confirmed the effect. ESP(ΔW) proves that the compactness of the native state can be enhanced by protein engineering and establishes a new lower limit to the compactness of the Class-A ß-lactamase fold. As the condensation achieved by the native state is a paramount notion in protein folding, this result may contribute to a better understanding of how the sequence determines the conformational variability and thermodynamic stability of a given fold.


Assuntos
Bacillus/enzimologia , Triptofano/química , beta-Lactamases/química , Bacillus/química , Bacillus/genética , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Dobramento de Proteína , Termodinâmica , Triptofano/genética , Triptofano/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...