Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 13181-13196, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859295

RESUMO

Device-independent quantum key distribution (DIQKD) aims at generating secret keys between distant parties without the parties trusting their devices. We investigate a proposal for performing fully photonic DIQKD, based on single photon sources and heralding measurements at a central station placed between the two parties. We derive conditions to attain non-zero secret-key rates in terms of the photon efficiency, indistinguishability and the second order autocorrelation function of the single-photon sources. Exploiting new results on the security bound of such protocols allows us to reduce the requirements on the physical parameters of the setup. Our analysis shows that in the considered schemes, key rates of several hundreds of secret bits per second are within reach at distances of several tens of kilometers.

2.
Phys Rev E ; 109(3-1): 034112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632747

RESUMO

We discuss exchange scenario thermodynamic uncertainty relations for the work done on a two-qubit entangled nonequilibrium steady state obtained by coupling the two qubits and putting each of them in weak contact with a thermal bath. In this way we investigate the use of entangled nonequilibrium steady states as end points of thermodynamic cycles. In this framework we prove analytically that for a paradigmatic unitary it is possible to construct an exchange scenario thermodynamic uncertainty relation. However, despite holding in many cases, we also show that such a relation ceases to be valid when considering other suitable unitary quenches. Furthermore, this paradigmatic example allows us to shed light on the role of the entanglement between the two qubits for precise work absorption. By considering the projection of the entangled steady state onto the set of separable states, we provide examples where such projection implies an increase of the relative uncertainty, showing the usefulness of entanglement.

3.
Phys Rev Lett ; 131(13): 130202, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37832009

RESUMO

Intrinsic quantum randomness is produced when a projective measurement on a given basis is implemented on a pure state that is not an element of the basis. The prepared state and implemented measurement are perfectly known, yet the measured result cannot be deterministically predicted. In realistic situations, however, measurements and state preparation are always noisy, which introduces a component of stochasticity in the outputs that is not a consequence of the intrinsic randomness of quantum theory. Operationally, this stochasticity is modeled through classical or quantum correlations with an eavesdropper, Eve, whose goal is to make the best guess about the outcomes produced in the experiment. In this Letter, we study Eve's maximum guessing probability when she is allowed to have correlations with both the state and the measurement. We show that, unlike the case of projective measurements (as it was already known) or pure states (as we prove), in the setting of generalized measurements and mixed states, Eve's guessing probability differs depending on whether she can prepare classically or quantumly correlated strategies.

4.
Phys Rev Lett ; 128(4): 040402, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148126

RESUMO

Quantum theory is commonly formulated in complex Hilbert spaces. However, the question of whether complex numbers need to be given a fundamental role in the theory has been debated since its pioneering days. Recently it has been shown that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios that cannot be modeled by the natural real-number analog of standard quantum theory. Here, we tailor such tests for implementation in state-of-the-art photonic systems. We experimentally demonstrate quantum correlations in a network of three parties and two independent EPR sources that violate the constraints of real quantum theory by over 4.5 standard deviations, hence disproving real quantum theory as a universal physical theory.

5.
Phys Rev Lett ; 128(4): 040502, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148153

RESUMO

We study the role of bath-induced correlations in temperature estimation of cold bosonic baths. Our protocol includes multiple probes, that are not interacting, nor are they initially correlated to each other. They interact with a bosonic sample and reach a nonthermal steady state, which is measured to estimate the temperature of the sample. It is well known that in the steady state such noninteracting probes may get correlated to each other and even entangled. Nonetheless, the impact of these correlations in metrology has not been deeply investigated yet. Here, we examine their role for thermometry of cold bosonic gases and show that, although being classical, bath-induced correlations can lead to significant enhancement of precision for thermometry. The improvement is especially important at low temperatures, where attaining high precision thermometry is particularly demanding. The proposed thermometry scheme does not require any precise dynamical control of the probes and tuning the parameters and is robust to noise in initial preparation, as it is built upon the steady state generated by the natural dissipative dynamics of the system. Therefore, our results put forward new possibilities in thermometry at low temperatures, of relevance, for instance, in cold gases and Bose-Einstein condensates.

6.
Nature ; 600(7890): 625-629, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34912122

RESUMO

Although complex numbers are essential in mathematics, they are not needed to describe physical experiments, as those are expressed in terms of probabilities, hence real numbers. Physics, however, aims to explain, rather than describe, experiments through theories. Although most theories of physics are based on real numbers, quantum theory was the first to be formulated in terms of operators acting on complex Hilbert spaces1,2. This has puzzled countless physicists, including the fathers of the theory, for whom a real version of quantum theory, in terms of real operators, seemed much more natural3. In fact, previous studies have shown that such a 'real quantum theory' can reproduce the outcomes of any multipartite experiment, as long as the parts share arbitrary real quantum states4. Here we investigate whether complex numbers are actually needed in the quantum formalism. We show this to be case by proving that real and complex Hilbert-space formulations of quantum theory make different predictions in network scenarios comprising independent states and measurements. This allows us to devise a Bell-like experiment, the successful realization of which would disprove real quantum theory, in the same way as standard Bell experiments disproved local physics.

7.
Phys Rev Lett ; 127(24): 240401, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951817

RESUMO

Self-testing is a device-independent method that usually amounts to show that the maximal quantum violation of a Bell's inequality certifies a unique quantum state, up to some symmetries inherent to the device-independent framework. In this work, we enlarge this approach and show how a coarse-grained version of self-testing is possible in which physically relevant properties of a many-body system are certified. To this aim we study a Bell scenario consisting of an arbitrary number of parties and show that the membership to a set of (entangled) quantum states whose size grows exponentially with the number of parties can be self-tested. Specifically, we prove that a many-body generalization of the chained Bell inequality is maximally violated if and only if the underlying quantum state is equal, up to local isometries, to a many-body singlet. The maximal violation of the inequality therefore certifies any statistical mixture of the exponentially many orthogonal pure states spanning the singlet manifold.

8.
Exp Astron (Dordr) ; 51(3): 1677-1694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744306

RESUMO

Recently, the European Commission supported by many European countries has announced large investments towards the commercialization of quantum technology (QT) to address and mitigate some of the biggest challenges facing today's digital era - e.g. secure communication and computing power. For more than two decades the QT community has been working on the development of QTs, which promise landmark breakthroughs leading to commercialization in various areas. The ambitious goals of the QT community and expectations of EU authorities cannot be met solely by individual initiatives of single countries, and therefore, require a combined European effort of large and unprecedented dimensions comparable only to the Galileo or Copernicus programs. Strong international competition calls for a coordinated European effort towards the development of QT in and for space, including research and development of technology in the areas of communication and sensing. Here, we aim at summarizing the state of the art in the development of quantum technologies which have an impact in the field of space applications. Our goal is to outline a complete framework for the design, development, implementation, and exploitation of quantum technology in space.

9.
Phys Rev Lett ; 127(5): 050503, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397256

RESUMO

Device-independent quantum key distribution is a secure quantum cryptographic paradigm that allows two honest users to establish a secret key, while putting minimal trust in their devices. Most of the existing protocols have the following structure: first, a bipartite nonlocal quantum state is distributed between the honest users, who perform local projective measurements to establish nonlocal correlations. Then, they announce the implemented measurements and extract a secure key by postprocessing their measurement outcomes. We show that no protocol of this form allows for establishing a secret key when implemented on any correlation obtained by measuring local projective measurements on certain entangled nonlocal states, namely, on a range of entangled two-qubit Werner states. To prove this result, we introduce a technique for upper bounding the asymptotic key rate of device-independent quantum key distribution protocols, based on a simple eavesdropping attack. Our results imply that either different reconciliation techniques are needed for device-independent quantum key distribution in the large-noise regime, or Bell nonlocality is not sufficient for this task.

10.
Phys Rev Lett ; 126(19): 190502, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047616

RESUMO

We study the detection of continuous-variable entanglement, for which most of the existing methods designed so far require a full specification of the devices, and we present protocols for entanglement detection in a scenario where the measurement devices are completely uncharacterized. We first generalize, to the continuous variable regime, the seminal results by Buscemi [Phys. Rev. Lett. 108, 200401 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.200401] and Branciard et al. [Phys. Rev. Lett. 110, 060405 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.060405], showing that all entangled states can be detected in this scenario. Most importantly, we then describe a practical protocol that allows for the measurement-device-independent certification of entanglement of all two-mode entangled Gaussian states. This protocol is feasible with current technology as it makes use only of standard optical setups such as coherent states and homodyne measurements.

11.
Phys Rev Lett ; 125(17): 170603, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156639

RESUMO

We demonstrate how to explore phase diagrams with automated and unsupervised machine learning to find regions of interest for possible new phases. In contrast to supervised learning, where data is classified using predetermined labels, we here perform anomaly detection, where the task is to differentiate a normal dataset, composed of one or several classes, from anomalous data. As a paradigmatic example, we explore the phase diagram of the extended Bose Hubbard model in one dimension at exact integer filling and employ deep neural networks to determine the entire phase diagram in a completely unsupervised and automated fashion. As input data for learning, we first use the entanglement spectra and central tensors derived from tensor-networks algorithms for ground-state computation and later we extend our method and use experimentally accessible data such as low-order correlation functions as inputs. Our method allows us to reveal a phase-separated region between supersolid and superfluid parts with unexpected properties, which appears in the system in addition to the standard superfluid, Mott insulator, Haldane-insulating, and density wave phases.

12.
Phys Rev Lett ; 125(26): 260507, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449758

RESUMO

Self-testing is a procedure for characterizing quantum resources with the minimal level of trust. Up to now it has been used as a device-independent certification tool for particular quantum measurements, channels, and pure entangled states. In this work we introduce the concept of self-testing more general entanglement structures. More precisely, we present the first self-tests of an entangled subspace-the five-qubit code and the toric code. We show that all quantum states maximally violating a suitably chosen Bell inequality must belong to the corresponding code subspace, which remarkably includes also mixed states.

13.
Phys Rev Lett ; 123(14): 140503, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702186

RESUMO

We present a method that allows the study of classical and quantum correlations in networks with causally independent parties, such as the scenario underlying entanglement swapping. By imposing relaxations of factorization constraints in a form compatible with semidefinite programing, it enables the use of the Navascués-Pironio-Acín hierarchy in complex quantum networks. We first show how the technique successfully identifies correlations not attainable in the entanglement-swapping scenario. Then we use it to show how the nonlocal power of measurements can be activated in a network: there exist measuring devices that, despite being unable to generate nonlocal correlations in the standard Bell scenario, provide a classical-quantum separation in an entanglement swapping configuration.

14.
Phys Rev Lett ; 121(18): 180503, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444410

RESUMO

We present a method to certify the entanglement of all entangled quantum states in a device-independent way. This is achieved by placing the state in a quantum network and constructing a correlation inequality based on an entanglement witness for the state. Our method is device independent, in the sense that entanglement can be certified from the observed statistics alone, under minimal assumptions on the underlying physics. Conceptually, our results borrow ideas from the field of self-testing to bring the recently introduced measurement-device-independent entanglement witnesses into the fully device-independent regime.

15.
Phys Rev Lett ; 120(20): 200402, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864297

RESUMO

To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.

16.
Science ; 360(6386): 285-291, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29519918

RESUMO

The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies.

17.
Phys Rev Lett ; 119(19): 190501, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219480

RESUMO

Standard projective measurements (PMs) represent a subset of all possible measurements in quantum physics, defined by positive-operator-valued measures. We study what quantum measurements are projective simulable, that is, can be simulated by using projective measurements and classical randomness. We first prove that every measurement on a given quantum system can be realized by classical randomization of projective measurements on the system plus an ancilla of the same dimension. Then, given a general measurement in dimension two or three, we show that deciding whether it is PM simulable can be solved by means of semidefinite programming. We also establish conditions for the simulation of measurements using projective ones valid for any dimension. As an application of our formalism, we improve the range of visibilities for which two-qubit Werner states do not violate any Bell inequality for all measurements. From an implementation point of view, our work provides bounds on the amount of white noise a measurement tolerates before losing any advantage over projective ones.

18.
Rep Prog Phys ; 80(12): 124001, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29105646

RESUMO

This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.

19.
Phys Rev Lett ; 119(11): 110601, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28949238

RESUMO

We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium. We prove a bound on the correlation decay between anticommuting operators and generalize a long-range Lieb-Robinson-type bound. Our results show that in these systems of spatial dimension D with, not necessarily translation invariant, two-site interactions decaying algebraically with the distance with an exponent α≥2D, correlations between such operators decay at least algebraically to 0 with an exponent arbitrarily close to α at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate by a high temperature expansion and by numerically analyzing density-density correlations in the one-dimensional quadratic (free, exactly solvable) Kitaev chain with long-range pairing.

20.
Phys Rev Lett ; 118(13): 130401, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28409963

RESUMO

Quantum mechanics postulates random outcomes. However, a model making the same output predictions but in a deterministic manner would be, in principle, experimentally indistinguishable from quantum theory. In this work we consider such models in the context of nonlocality on a device-independent scenario. That is, we study pairs of nonlocal boxes that produce their outputs deterministically. It is known that, for these boxes to be nonlocal, at least one of the boxes' outputs has to depend on the other party's input via some kind of hidden signaling. We prove that, if the deterministic mechanism is also algorithmic, there is a protocol that, with the sole knowledge of any upper bound on the time complexity of such an algorithm, extracts that hidden signaling and uses it for the communication of information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...