Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Model Earth Syst ; 12(8): e2019MS002025, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999704

RESUMO

This paper describes the GISS-E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS-E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same. Model skill when compared to modern era climatologies is significantly higher than in previous versions. Additionally, updates in forcings have a material impact on the results. In particular, there have been specific improvements in representations of modes of variability (such as the Madden-Julian Oscillation and other modes in the Pacific) and significant improvements in the simulation of the climate of the Southern Oceans, including sea ice. The effective climate sensitivity to 2 × CO2 is slightly higher than previously at 2.7-3.1°C (depending on version) and is a result of lower CO2 radiative forcing and stronger positive feedbacks.

2.
Atmos Res ; 2392020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32494092

RESUMO

The Research Scanning Polarimeter (RSP) is an airborne along-track scanner measuring the polarized and total reflectances with high angular resolution. It allows for accurate characterization of liquid water cloud droplet sizes using the rainbow structure in the polarized reflectance. RSP's observations also provide constraints on the cumulus cloud's 2D cross section, yielding estimates of its geometric shape. In this study for the first time we evaluate the possibility to retrieve vertical profiles of microphysical characteristics along the cloud side by combining these micro- and macrophysical retrieval methods. First we constrain cloud's geometric shape, then for each point on the bright side of its surface we collect data from different scans to obtain the multi-angle polarized reflectance at that point. The rainbow structures of the reflectances from multiple points yield the corresponding droplet size distributions (DSDs), which are then combined into vertical profiles. We present the results of testing the proposed profiling algorithm on simulated data obtained using large eddy simulations and 3D radiative transfer computations. The virtual RSP measurements were used for retrieval of DSD profiles, which then were compared to the actual data from the LES-model output. A cumulus congestus cloud was selected for these tests in preparation for analysis of real measurements made during the Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex). We demonstrate that the use of the non-parametric Rainbow Fourier Transform (RFT) allows for adequate retrieval of the complex altitude-dependent bimodal structure of cloud DSDs.

3.
J Geophys Res Atmos ; 124(20): 10878-10895, 2019 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32913697

RESUMO

The rarity of reports in the literature of brief and spatially limited observations of drizzle at temperatures below -20°C suggest that riming and other temperature-dependent cloud microphysical processes such as heterogeneous ice nucleation and ice crystal depositional growth prevent drizzle persistence in cold environments. In this study, we report on a persistent drizzle event observed by ground-based remote-sensing measurements at McMurdo Station, Antarctica. The temperatures in the drizzle-producing cloud were below -25°C and the drizzle persisted for a period exceeding 7.5 hours. Using ground-based, satellite, and reanalysis data we conclude that drizzle was likely present in parts of a widespread cloud field, which stretched more than ~1000 km along the Ross Ice Shelf coast. Parameter space sensitivity tests using two-moment bulk microphysics in large-eddy simulations constrained by the observations suggest that activated ice freezing nuclei (IFN) and accumulation-mode aerosol number concentrations aloft during this persistent drizzle period were likely on the order of 0.2 L-1 and 20 cm-3, respectively. In such constrained simulations, the drizzle moisture flux through cloud base exceeds that of ice. The simulations also indicate that drizzle can lead to the formation of multiple peaks in cloud water content profiles. This study suggests that persistent drizzle at these low temperatures may be common at the low aerosol concentrations typical of the Antarctic and Southern Ocean atmospheres.

4.
J Atmos Sci ; 75: 257-274, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30705465

RESUMO

This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of sub-cloud moist cold pools surprisingly tends to respond to, rather than determine, the mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.

5.
Geophys Res Lett ; 44(3): 1574-1582, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29551842

RESUMO

Over decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particles concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in-situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system.

6.
J Atmos Sci ; 73(No 2): 775-787, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28983127

RESUMO

The use of ensemble-average values of aspect ratio and distortion parameter of hexagonal ice prisms for the estimation of ensemble-average scattering asymmetry parameters is evaluated. Using crystal aspect ratios greater than unity generally leads to ensemble-average values of aspect ratio that are inconsistent with the ensemble-average asymmetry parameters. When a definition of aspect ratio is used that limits the aspect ratio to below unity (α≤1) for both hexagonal plates and columns, the effective asymmetry parameters calculated using ensemble-average aspect ratios are generally consistent with ensemble-average asymmetry parameters, especially if aspect ratios are geometrically averaged. Ensemble-average distortion parameters generally also yield effective asymmetry parameters that are largely consistent with ensemble-average asymmetry parameters. In the case of mixtures of plates and columns, it is recommended to geometrically average the α≤1 aspect ratios and to subsequently calculate the effective asymmetry parameter using a column or plate geometry when the contribution by columns to a given mixture's total projected area is greater or lower than 50%, respectively. In addition, we show that ensemble-average aspect ratios, distortion parameters and asymmetry parameters can generally be retrieved accurately from simulated multi-directional polarization measurements based on mixtures of varying columns and plates. However, such retrievals tend to be somewhat biased toward yielding column-like aspect ratios. Furthermore, generally large retrieval errors can occur for mixtures with approximately equal contributions of columns and plates and for ensembles with strong contributions of thin plates.

7.
Mon Weather Rev ; 144(No 2): 737-758, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29503466

RESUMO

The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase (KDP) observed above the melting level are associated with deep convection updraft cells, so-called "KDP columns" are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR KDP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity (ZDR). Results indicate strong correlations of KDP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of KDP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of ZDR to KDP shows commonalities in information content of each, as well as potential problems with ZDR associated with observational artifacts.

8.
Geophys Res Lett ; 43(9): 4586-4593, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29618850

RESUMO

A novel technique is used to estimate derivatives of ice effective radius with respect to height near convective cloud tops (dre /dz) from airborne shortwave reflectance measurements and lidar. Values of dre /dz are about -6 µm/km for cloud tops below the homogeneous freezing level, increasing to near 0 µm/km above the estimated level of neutral buoyancy. Retrieved dre /dz compares well with previously documented remote sensing and in situ estimates. Effective radii decrease with increasing cloud top height, while cloud top extinction increases. This is consistent with weaker size sorting in high, dense cloud tops above the level of neutral buoyancy where fewer large particles are present, and with stronger size sorting in lower cloud tops that are less dense. The results also confirm that cloud-top trends of effective radius can generally be used as surrogates for trends with height within convective cloud tops. These results provide valuable observational targets for model evaluation.

9.
J Geophys Res Atmos ; 121(8): 4122-4141, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29637042

RESUMO

Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.

10.
Geophys Res Lett ; 42(13): 5485-5492, 2015 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-26937058

RESUMO

Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.

11.
J Geophys Res Atmos ; 120(9): 4132-4154, 2015 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27656330

RESUMO

Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius (re ) and optical thickness (τ) by projecting observed cloud reflectances onto a precomputed look-up table (LUT). When observations fall outside of the LUT, the retrieval is considered "failed" because no combination of τ and re within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the "re too large" failure accounting for 60%-85% of all failed retrievals. The rest is mostly due to the "re too small" or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun-satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large re values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study.

12.
Nature ; 432(7020): 1014-7, 2004 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-15616559

RESUMO

Some of the global warming from anthropogenic greenhouse gases is offset by increased reflection of solar radiation by clouds with smaller droplets that form in air polluted with aerosol particles that serve as cloud condensation nuclei. The resulting cooling tendency, termed the indirect aerosol forcing, is thought to be comparable in magnitude to the forcing by anthropogenic CO2, but it is difficult to estimate because the physical processes that determine global aerosol and cloud populations are poorly understood. Smaller cloud droplets not only reflect sunlight more effectively, but also inhibit precipitation, which is expected to result in increased cloud water. Such an increase in cloud water would result in even more reflective clouds, further increasing the indirect forcing. Marine boundary-layer clouds polluted by aerosol particles, however, are not generally observed to hold more water. Here we simulate stratocumulus clouds with a fluid dynamics model that includes detailed treatments of cloud microphysics and radiative transfer. Our simulations show that the response of cloud water to suppression of precipitation from increased droplet concentrations is determined by a competition between moistening from decreased surface precipitation and drying from increased entrainment of overlying air. Only when the overlying air is humid or droplet concentrations are very low does sufficient precipitation reach the surface to allow cloud water to increase with droplet concentrations. Otherwise, the response of cloud water to aerosol-induced suppression of precipitation is dominated by enhanced entrainment of overlying dry air. In this scenario, cloud water is reduced as droplet concentrations increase, which diminishes the indirect climate forcing.

13.
Science ; 304(5671): 718-22, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15118158

RESUMO

NASA's recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment focused on anvil cirrus clouds, an important but poorly understood element of our climate system. The data obtained included the first comprehensive measurements of aerosols and cloud particles throughout the atmospheric column during the evolution of multiple deep convective storm systems. Coupling these new measurements with detailed cloud simulations that resolve the size distributions of aerosols and cloud particles, we found several lines of evidence indicating that most anvil crystals form on mid-tropospheric rather than boundary-layer aerosols. This result defies conventional wisdom and suggests that distant pollution sources may have a greater effect on anvil clouds than do local sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...