Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(7): eaau9784, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31392263

RESUMO

When a batch of magma reaches Earth's surface, it forms a vent from which volcanic products are erupted. At many volcanoes, successive batches may open vents far away from previous ones, resulting in scattered, sometimes seemingly random spatial distributions. This exposes vast areas to volcanic hazards and makes forecasting difficult. Here, we show that magma pathways and thus future vent locations may be forecast by combining the physics of magma transport with a Monte Carlo inversion scheme for the volcano stress history. We validate our approach on a densely populated active volcanic field, Campi Flegrei (Italy), where we forecast future vents on an onshore semiannular belt located between 2.3 and 4.2 km from the caldera center. Our approach offers a mechanical explanation for the vent migration over time at Campi Flegrei and at many calderas worldwide and may be applicable to volcanoes of any type.

2.
Geophys Res Lett ; 46(24): 14421-14429, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-32139949

RESUMO

Transient seismicity at active volcanoes poses a significant risk in addition to eruptive activity. This risk is powered by the common belief that volcanic seismicity cannot be forecast, even on a long term. Here we investigate the nature of volcanic seismicity to try to improve our forecasting capacity. To this aim, we consider Ischia volcano (Italy), which suffered similar earthquakes along its uplifted resurgent block. We show that this seismicity marks an acceleration of decades-long subsidence of the resurgent block, driven by degassing of magma that previously produced the uplift, a process not observed at other volcanoes. Degassing will continue for hundreds to thousands of years, causing protracted seismicity and will likely be accompanied by moderate and damaging earthquakes. The possibility to constrain the future duration of seismicity at Ischia indicates that our capacity to forecast earthquakes might be enhanced when seismic activity results from long-term magmatic processes, such as degassing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...