Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(12): e4825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924304

RESUMO

Hirudin from Hirudo medicinalis is a bivalent α-Thrombin (αT) inhibitor, targeting the enzyme active site and exosite-I, and is currently used in anticoagulant therapy along with its simplified analogue hirulog. Haemadin, a small protein (57 amino acids) isolated from the land-living leech Haemadipsa sylvestris, selectively inhibits αT with a potency identical to that of recombinant hirudin (KI = 0.2 pM), with which it shares a common disulfide topology and overall fold. At variance with hirudin, haemadin targets exosite-II and therefore (besides the free protease) it also blocks thrombomodulin-bound αT without inhibiting the active intermediate meizothrombin, thus offering potential advantages over hirudin. Here, we produced in reasonably high yields and pharmaceutical purity (>98%) wild-type haemadin and the oxidation resistant Met5 → nor-Leucine analogue, both inhibiting αT with a KI of 0.2 pM. Thereafter, we used site-directed mutagenesis, spectroscopic, ligand-displacement, and Hydrogen/Deuterium Exchange-Mass Spectrometry techniques to map the αT regions relevant for the interaction with full-length haemadin and with the synthetic N- and C-terminal peptides Haem(1-10) and Haem(45-57). Haem(1-10) competitively binds to/inhibits αT active site (KI = 1.9 µM) and its potency was enhanced by 10-fold after Phe3 → ß-Naphthylalanine exchange. Conversely to full-length haemadin, haem(45-57) displays intrinsic affinity for exosite-I (KD = 1.6 µM). Hence, we synthesized a peptide in which the sequences 1-9 and 45-57 were joined together through a 3-Glycine spacer to yield haemanorm, a highly potent (KI = 0.8 nM) inhibitor targeting αT active site and exosite-I. Haemanorm can be regarded as a novel class of hirulog-like αT inhibitors with potential pharmacological applications.


Assuntos
Hirudinas , Trombina , Hirudinas/genética , Hirudinas/farmacologia , Hirudinas/química , Trombina/química , Trombina/metabolismo , Sequência de Aminoácidos , Peptídeos , Heme
2.
Bioorg Med Chem ; 95: 117499, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879145

RESUMO

The inhibition of human urokinase-type plasminogen activator (huPA), a serine protease that plays an important role in pericellular proteolysis, is a promising strategy to decrease the invasive and metastatic activity of tumour cells. However, the generation of selective small molecule huPA inhibitors has proven to be challenging due to the high structural similarity of huPA to other paralogue serine proteases. Efforts to generate more specific therapies have led to the development of cyclic peptide-based inhibitors with much higher selectivity against huPA. While this latter property is desired, the sparing of the orthologue murine poses difficulties for the testing of the inhibitor in preclinical mouse model. In this work, we have applied a Darwinian evolution-based approach to identify phage-encoded bicyclic peptide inhibitors of huPA with better cross-reactivity towards murine uPA (muPA). The best selected bicyclic peptide (UK132) inhibited huPA and muPA with Ki values of 0.33 and 12.58 µM, respectively. The inhibition appears to be specific for uPA, as UK132 only weakly inhibits a panel of structurally similar serine proteases. Removal or substitution of the second loop with one not evolved in vitro led to monocyclic and bicyclic peptide analogues with lower potency than UK132. Moreover, swapping of 1,3,5-tris-(bromomethyl)-benzene with different small molecules not used in the phage selection, resulted in an 80-fold reduction of potency, revealing the important structural role of the branched cyclization linker. Further substitution of an arginine in UK132 to a lysine resulted in a bicyclic peptide UK140 with enhanced inhibitory potency against both huPA (Ki = 0.20 µM) and murine orthologue (Ki = 2.79 µM). By combining good specificity, nanomolar affinity and a low molecular mass, the bicyclic peptide inhibitor developed in this work may provide a novel human and murine cross-reactive lead for the development of a potent and selective anti-metastatic therapy.


Assuntos
Peptídeos , Ativador de Plasminogênio Tipo Uroquinase , Camundongos , Humanos , Animais , Ativador de Plasminogênio Tipo Uroquinase/química , Peptídeos/farmacologia , Peptídeos/química , Serina Proteases , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química
3.
Eur J Pharm Sci ; 187: 106489, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311533

RESUMO

Despite several vaccines that are currently approved for human use to control the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent medical need for therapeutic and prophylactic options. SARS-CoV-2 binding and entry in human cells involves interactions of its spike (S) protein with several host cell surface factors, including heparan sulfate proteoglycans (HSPGs), transmembrane protease serine 2 (TMPRSS2), and angiotensin-converting enzyme 2 (ACE2). In this paper we investigated the potential of sulphated Hyaluronic Acid (sHA), a HSPG mimicking polymer, to inhibit the binding of SARS-CoV-2 S protein to human ACE2 receptor. After the assessment of different sulfation degree of sHA backbone, a series of sHA functionalized with different hydrophobic side chains were synthesized and screened. The compound showing the highest binding affinity to the viral S protein was further characterized by surface plasmon resonance (SPR) towards ACE2 and viral S protein binding domain. Selected compounds were formulated as solutions for nebulization and, after being characterized in terms of aerosolization performance and droplet size distribution, their efficacy was assessed in vivo using the K18 human (h)ACE2 transgenic mouse model of SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , Ácido Hialurônico , Enzima de Conversão de Angiotensina 2 , Sulfatos , Camundongos Transgênicos
4.
J Mech Behav Biomed Mater ; 143: 105908, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209594

RESUMO

Hyaluronic acid (HA) is frequently formulated in eye drops to improve the stability of the tear film by hydration and lubrication. Mucoadhesion is related to the ocular residence time and therefore to the effectiveness of the eye drops. The ocular residence time of the HA formulation is correlated with the ability of HA to create specific strong interactions in the ocular surface with the mucus layer, mainly composed of a mixture of secreted mucins (MUC; gel forming MUC5AC and MUC2) and shed membrane-bound soluble mucins (MUC1, MUC4, and MUC16). Dry eye disease (DED) is a multifactorial pathology of the preocular tear film with possible damage to the ocular surface classified in two types: (1) aqueous-deficient dry eye and (2) evaporative dry eye, caused by a decrease in goblet cell density that reduces MUC expression and/or by meibomian gland dysfunction, that results in a drop in the lipidic fraction of the tear film. In this work, the binding affinity between HA and MUC2 has been evaluated with three complementary approaches because the secreted MUCs play a pivotal role in the viscoelastic properties of the tear film: 1. Rheological analysis, measuring the mucoadhesive index and the complex viscosity in relation to MM (Molecular Mass) and concentration; 2. Fluorescence analysis, using a fluorescent hydrophobic probe, to investigate the conformational change of MUC2 during the interaction with the HA polymer; 3. Surface plasmon resonance analysis, used to measure the affinity between MUC2 (immobilized on the surface of a sensor chip) and the HA polymers that flowed on it at the molecular level. For all these tests, the mucoadhesive performance of the natural HA linearly increases with the MM, whereas cross-linked HA and other emollient and gelling agents (formulated in artificial tears) do not show the same mucoadhesive properties (with the exception of xanthan gum). The mucoadhesive performance of high MM HA has also been confirmed in conditions that simulate the pathological condition of the tear film during DED by decreasing the MUC2 or oleic acid concentration. Physico-chemical analysis of a series of marketed artificial tears confirms the linear correlation between the MM of the HA used in the products and the mucoadhesive index measured on the ocular surface model.


Assuntos
Síndromes do Olho Seco , Ácido Hialurônico , Humanos , Lubrificantes Oftálmicos , Peso Molecular , Olho , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Mucinas/análise
5.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954311

RESUMO

The Epidermal Growth Factor Receptor (EGFR) is a transmembrane glycoprotein belonging to the protein kinase superfamily. It is composed of an extracellular domain, a transmembrane anchoring region and a cytoplasmic region endowed with tyrosine kinase activity. Genetic mutations of EGFR kinase cause higher activity thereby stimulating downstream signaling pathways that, in turn, impact transcription and cell cycle progression. Due to the involvement of mutant EGFR in tumors and inflammatory diseases, in the past decade, several EGFR inhibitory strategies have been extensively studied, either targeting the extracellular domain (through monoclonal antibodies) or the intracellular kinase domain (through ATP-mimic small molecules). Monoclonal antibodies impair the binding to growth factor, the receptor dimerization, and its activation, whereas small molecules block the intracellular catalytic activity. Herein, we describe the development of a novel small molecule, called DSF-102, that interacts with the extracellular domain of EGFR. When tested in vitro in KRAS mutant A549 cells, it impairs EGFR activity by exerting (i) dose-dependent toxicity effects; (ii) a negative regulation of ERK, MAPK p38 and AKT; and (iii) a modulation of the intracellular trafficking and lysosomal degradation of EGFR. Interestingly, DSF-102 exerts its EGFR inhibitory activity without showing interaction with the intracellular kinase domain. Taken together, these findings suggest that DSF-102 is a promising hit compound for the development of a novel class of anti-EGFR compounds, i.e., small molecules able to interact with the extracellular domain of EGFR and useful for overcoming the KRAS-driven resistance to TKI treatment.

6.
Sci Rep ; 12(1): 9880, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701444

RESUMO

α-Synuclein (αSyn) is a small disordered protein, highly conserved in vertebrates and involved in the pathogenesis of Parkinson's disease (PD). Indeed, αSyn amyloid aggregates are present in the brain of patients with PD. Although the pathogenic role of αSyn is widely accepted, the physiological function of this protein remains elusive. Beyond the central nervous system, αSyn is expressed in hematopoietic tissue and blood, where platelets are a major cellular host of αSyn. Platelets play a key role in hemostasis and are potently activated by thrombin (αT) through the cleavage of protease-activated receptors. Furthermore, both αT and αSyn could be found in the same spatial environment, i.e. the platelet membrane, as αT binds to and activates platelets that can release αSyn from α-granules and microvesicles. Here, we investigated the possibility that exogenous αSyn could interfere with platelet activation induced by different agonists in vitro. Data obtained from distinct experimental techniques (i.e. multiple electrode aggregometry, rotational thromboelastometry, immunofluorescence microscopy, surface plasmon resonance, and steady-state fluorescence spectroscopy) on whole blood and platelet-rich plasma indicate that exogenous αSyn has mild platelet antiaggregating properties in vitro, acting as a negative regulator of αT-mediated platelet activation by preferentially inhibiting P-selectin expression on platelet surface. We have also shown that both exogenous and endogenous (i.e. cytoplasmic) αSyn preferentially bind to the outer surface of activated platelets. Starting from these findings, a coherent model of the antiplatelet function of αSyn is proposed.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Doença de Parkinson/metabolismo , Ativação Plaquetária , Inibidores da Agregação Plaquetária , Trombina/farmacologia , alfa-Sinucleína/metabolismo
7.
Biomedicines ; 10(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35052783

RESUMO

Homo- and heterophilic binding mediated by the immunoglobulin (Ig)-like repeats of cell adhesion molecules play a pivotal role in cell-cell and cell-extracellular matrix interactions. L1CAM is crucial to neuronal differentiation, in both mature and developing nervous systems, and several studies suggest that its functional interactions are mainly mediated by Ig2-Ig2 binding. X-linked mutations in the human L1CAM gene are summarized as L1 diseases, including the most diagnosed CRASH neurodevelopmental syndrome. In silico simulations provided a molecular rationale for CRASH phenotypes resulting from mutations I179S and R184Q in the homophilic binding region of Ig2. A synthetic peptide reproducing such region could both mimic the neuritogenic capacity of L1CAM and rescue neuritogenesis in a cellular model of the CRASH syndrome, where the full L1CAM ectodomain proved ineffective. Presented functional evidence opens the route to the use of L1CAM-derived peptides as biotechnological and therapeutic tools.

8.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614141

RESUMO

Amyloidoses are a group of diseases associated with deposits of amyloid fibrils in different tissues. So far, 36 different types of amyloidosis are known, each due to the misfolding and accumulation of a specific protein. Amyloid deposits can be found in several organs, including the heart, brain, kidneys, and spleen, and can affect single or multiple organs. Generally, amyloid-forming proteins become prone to aggregate due to genetic mutations, acquired environmental factors, excessive concentration, or post-translational modifications. Interestingly, amyloid aggregates are often composed of proteolytic fragments, derived from the degradation of precursor proteins by yet unidentified proteases, which display higher amyloidogenic tendency compared to precursor proteins, thus representing an important mechanism in the onset of amyloid-based diseases. In the present review, we summarize the current knowledge on the proteolytic susceptibility of three of the main human amyloidogenic proteins, i.e., transthyretin, ß-amyloid precursor protein, and α-synuclein, in the onset of amyloidosis. We also highlight the role that proteolytic enzymes can play in the crosstalk between intestinal inflammation and amyloid-based diseases.


Assuntos
Amiloidose , Humanos , Proteólise , Amiloidose/metabolismo , Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursores de Proteínas/metabolismo , Pré-Albumina/metabolismo , Peptídeo Hidrolases/metabolismo
9.
Comput Struct Biotechnol J ; 19: 5622-5636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712402

RESUMO

The discovery of conserved protein motifs can, in turn, unveil important regulatory signals, and when properly designed, synthetic peptides derived from such motifs can be used as biomimetics for biotechnological and therapeutic purposes. We report here that specific Ig-like repeats from the extracellular domains of neuronal Cell Adhesion Molecules share a highly conserved Neurite Outgrowth and Guidance (NOG) motif, which mediates homo- and heterophilic interactions crucial in neural development and repair. Synthetic peptides derived from the NOG motif of such proteins can boost neuritogenesis, and this potential is also retained by peptides with recombinant sequences, when fitting the NOG sequence pattern. The NOG motif discovery not only provides one more tile to the complex puzzle of neuritogenesis, but also opens the route to new neural regeneration strategies via a tunable biomimetic toolbox.

10.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199427

RESUMO

The interplay between α-synuclein and dopamine derivatives is associated with oxidative stress-dependent neurodegeneration in Parkinson's disease (PD). The formation in the dopaminergic neurons of intraneuronal inclusions containing aggregates of α-synuclein is a typical hallmark of PD. Even though the biochemical events underlying the aberrant aggregation of α-synuclein are not completely understood, strong evidence correlates this process with the levels of dopamine metabolites. In vitro, 3,4-dihydroxyphenylacetaldehyde (DOPAL) and the other two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET), share the property to inhibit the growth of mature amyloid fibrils of α-synuclein. Although this effect occurs with the formation of differently toxic products, the molecular basis of this inhibition is still unclear. Here, we provide information on the effect of DOPAC on the aggregation properties of α-synuclein and its ability to interact with membranes. DOPAC inhibits α-synuclein aggregation, stabilizing monomer and inducing the formation of dimers and trimers. DOPAC-induced oligomers did not undergo conformational transition in the presence of membranes, and penetrated the cell, where they triggered autophagic processes. Cellular assays showed that DOPAC reduced cytotoxicity and ROS production induced by α-synuclein aggregates. Our findings show that the early radicals resulting from DOPAC autoxidation produced covalent modifications of the protein, which were not by themselves a primary cause of either fibrillation or membrane binding inhibition. These findings are discussed in the light of the potential mechanism of DOPAC protection against the toxicity of α-synuclein aggregates to better understand protein and catecholamine biology and to eventually suggest a scaffold that can help in the design of candidate molecules able to interfere in α-synuclein aggregation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Amiloide/efeitos dos fármacos , Amiloide/genética , Dopamina/genética , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Multimerização Proteica/genética , alfa-Sinucleína/antagonistas & inibidores
11.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803867

RESUMO

Transient receptor potential channels-vanilloid receptor 1 (TRPV1) regulates thermotaxis in sperm-oriented motility. We investigated the role of membrane cholesterol (Chol) on TRPV1-mediated human sperm migration. Semen samples were obtained from five normozoospemic healthy volunteers. Sperm membrane Chol content, quantified by liquid chromatography-mass spectrometry, was modified by incubating cells with 2-hydroxypropyl-ß-cyclodextrin (CD) or the complex between CD and Chol (CD:Chol). The effect on sperm migration on a 10 µM capsaicin gradient (CPS), a TRPV1 agonist, was then investigated. Motility parameters were evaluated by Sperm Class Analyser. Intracellular calcium concentration and acrosome reaction were measured by staining with calcium orange and FITC-conjugated anti-CD46 antibody, respectively. TRPV1-Chol interaction was modelled by computational molecular-modelling (MM). CD and CD:Chol, respectively, reduced and increased membrane Chol content in a dose-dependent manner, resulting in a dose-dependent increase and reduction of sperm migration in a CPS gradient. MM confirmed a specific interaction of Chol with a TRPV1 domain that appeared precluded to the Chol epimer epicholesterol (Epi-Chol). Accordingly, CD:Epi-Chol was significantly less efficient than CD:Chol, in reducing sperm migration under CPS gradient. Chol inhibits TRPV1-mediated sperm function by directly interacting with a consensus sequence of the receptor.


Assuntos
Colesterol/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Canais de Cátion TRPV/metabolismo , Adulto , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ciclodextrinas/farmacologia , Humanos , Masculino , Modelos Moleculares , Canais de Cátion TRPV/química
12.
Entropy (Basel) ; 23(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920144

RESUMO

BACKGROUND AND AIM: Mental stress represents a pivotal factor in cardiovascular diseases. The mechanism by which stress produces its deleterious ischemic effects is still under study but some of the most explored pathways are inflammation, endothelial function and balancing of the thrombotic state. In this scenario, von Willebrand factor (vWF) is a plasma glycoprotein best known for its crucial hemostatic role, also acting as key regulatory element of inflammation, being released by the activated vascular endothelium. Antistress techniques seem to be able to slow down inflammation. As we have recently verified how the practice of the Relaxation Response (RR), which counteracts psychological stress, causes favorable changes in some inflammatory genes' expressions, neurotransmitters, hormones, cytokines and inflammatory circulating microRNAs with coronary endothelial function improvement, we aimed to verify a possible change even in serum levels of vWF. Experimental procedure: We measured vWF multimers and the total protein carbonyl contents in the sera of 90 patients with ischemic heart disease (and 30 healthy controls) immediately before and after an RR session, three times (baseline, 6 months, 12 months), during a one-year follow-up study. RESULTS: According to our data, large vWF multimers decrease during the RR, as does the plasma total carbonyl content. CONCLUSION: vWF levels seem to vary rapidly between anti-inflammatory and antithrombotic behaviors dependent on psychological activity, leading to relaxation and also possibly changes in its quaternary structure.

13.
Nat Commun ; 12(1): 1693, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727531

RESUMO

Proteases are among the largest protein families and critical regulators of biochemical processes like apoptosis and blood coagulation. Knowledge of proteases has been expanded by the development of proteomic approaches, however, technology for multiplexed screening of proteases within native environments is currently lacking behind. Here we introduce a simple method to profile protease activity based on isolation of protease products from native lysates using a 96FASP filter, their analysis in a mass spectrometer and a custom data analysis pipeline. The method is significantly faster, cheaper, technically less demanding, easy to multiplex and produces accurate protease fingerprints. Using the blood cascade proteases as a case study, we obtain protease substrate profiles that can be used to map specificity, cleavage entropy and allosteric effects and to design protease probes. The data further show that protease substrate predictions enable the selection of potential physiological substrates for targeted validation in biochemical assays.


Assuntos
Entropia , Ensaios de Triagem em Larga Escala , Peptídeo Hidrolases/sangue , Peptídeo Hidrolases/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Coagulação Sanguínea , Fluorescência , Células HEK293 , Humanos , Metaloproteinases da Matriz/metabolismo , Peptídeos/metabolismo , Especificidade por Substrato , Tromboplastina/metabolismo
14.
Sci Rep ; 10(1): 16789, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033332

RESUMO

Perfluoroalkyl substances (PFAS) are a class of compounds used in industry and consumer products. Perfluorooctanoic acid (PFOA) is the predominant form in human samples and has been shown to induce severe health consequences, such as neonatal mortality, neurotoxicity, and immunotoxicity. Toxicological studies indicate that PFAS accumulate in bone tissues and cause altered bone development. Epidemiological studies have reported an inverse relationship between PFAS and bone health, however the associated mechanisms are still unexplored. Here, we present computational, in silico and in vitro evidence supporting the interference of PFOA on vitamin D (VD). First, PFOA competes with calcitriol on the same binding site of the VD receptor, leading to an alteration of the structural flexibility and a 10% reduction by surface plasmon resonance analysis. Second, this interference leads to an altered response of VD-responsive genes in two cellular targets of this hormone, osteoblasts and epithelial cells of the colorectal tract. Third, mineralization in human osteoblasts is reduced upon coincubation of PFOA with VD. Finally, in a small cohort of young healthy men, PTH levels were higher in the exposed group, but VD levels were comparable. Altogether these results provide the first evidence of endocrine disruption by PFOA on VD pathway by competition on its receptor and subsequent inhibition of VD-responsive genes in target cells.


Assuntos
Caprilatos/farmacologia , Disruptores Endócrinos/farmacologia , Fluorocarbonos/farmacologia , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/sangue , Receptores de Calcitriol/metabolismo , Vitamina D/sangue , Adolescente , Linhagem Celular Tumoral , Estudos Transversais , Humanos , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Osteoblastos/metabolismo , Adulto Jovem
15.
Sci Rep ; 9(1): 6125, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992526

RESUMO

Prothrombin, or coagulation factor II, is a multidomain zymogen precursor of thrombin that undergoes an allosteric equilibrium between two alternative conformations, open and closed, that react differently with the physiological activator prothrombinase. Specifically, the dominant closed form promotes cleavage at R320 and initiates activation along the meizothrombin pathway, whilst the open form promotes cleavage at R271 and initiates activation along the alternative prethrombin-2 pathway. Here we report how key structural features of prothrombin can be monitored by limited proteolysis with chymotrypsin that attacks W468 in the flexible autolysis loop of the protease domain in the open but not the closed form. Perturbation of prothrombin by selective removal of its constituent Gla domain, kringles and linkers reveals their long-range communication and supports a scenario where stabilization of the open form switches the pathway of activation from meizothrombin to prethrombin-2. We also identify R296 in the A chain of the protease domain as a critical link between the allosteric open-closed equilibrium and exposure of the sites of cleavage at R271 and R320. These findings reveal important new details on the molecular basis of prothrombin function.


Assuntos
Precursores Enzimáticos/metabolismo , Domínios Proteicos , Protrombina/metabolismo , Trombina/metabolismo , Regulação Alostérica , Quimotripsina/metabolismo , Cristalografia por Raios X , Precursores Enzimáticos/química , Fator Xa/metabolismo , Estabilidade Proteica , Proteólise , Protrombina/química , Relação Estrutura-Atividade , Trombina/química
16.
Sci Rep ; 9(1): 300, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670733

RESUMO

The mouse Major Urinary Proteins (MUPs) contain a conserved ß-barrel structure with a characteristic central hydrophobic pocket that binds a variety of volatile compounds. After release of urine, these molecules are slowly emitted in the environment where they play an important role in chemical communication. MUPs are highly polymorphic and conformationally stable. They may be of interest in the construction of biosensor arrays capable of detection of a broad range of analytes. In this work, 14 critical amino acids in the binding pocket involved in ligand interactions were identified in MUP20 using in silico techniques and 7 MUP20 mutants were synthesised and characterised to produce a set of proteins with diverse ligand binding profiles to structurally different ligands. A single amino acid substitution in the binding pocket can dramatically change the MUPs binding affinity and ligand specificity. These results have great potential for the design of new biosensor and gas-sensor recognition elements.


Assuntos
Sítios de Ligação/genética , Mutação Puntual , Proteínas/genética , Aminoácidos , Animais , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Camundongos , Proteínas Mutantes/síntese química , Proteínas Mutantes/genética , Ligação Proteica/genética , Proteínas/química
17.
J Clin Endocrinol Metab ; 104(4): 1259-1271, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403786

RESUMO

BACKGROUND: Considerable attention has been paid to perfluoroalkyl compounds (PFCs) because of their worldwide presence in humans, wildlife, and environment. A wide variety of toxicological effects is well supported in animals, including testicular toxicity and male infertility. For these reasons, the understanding of epidemiological associations and of the molecular mechanisms involved in the endocrine-disrupting properties of PFCs on human reproductive health is a major concern. OBJECTIVE: To investigate the relationship between PFC exposure and male reproductive health. DESIGN: This study was performed within a screening protocol to evaluate male reproductive health in high schools. PATIENTS: This is a cross-sectional study on 212 exposed males from the Veneto region, one of the four areas worldwide heavily polluted with PFCs, and 171 nonexposed controls. MAIN OUTCOME MEASURES: Anthropometrics, seminal parameters, and sex hormones were measured in young males from exposed areas compared with age-matched controls. We also performed biochemical studies in established experimental models. RESULTS: We found that increased levels of PFCs in plasma and seminal fluid positively correlate with circulating testosterone (T) and with a reduction of semen quality, testicular volume, penile length, and anogenital distance. Experimental evidence points toward an antagonistic action of perfluorooctanoic acid on the binding of T to androgen receptor (AR) in a gene reporter assay, a competition assay on an AR-coated surface plasmon resonance chip, and an AR nuclear translocation assay. DISCUSSION: This study documents that PFCs have a substantial impact on human health as they interfere with hormonal pathways, potentially leading to male infertility.


Assuntos
Caprilatos/toxicidade , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Saúde Reprodutiva , Testosterona/metabolismo , Adolescente , Caprilatos/análise , Estudos Transversais , Disruptores Endócrinos/análise , Poluentes Ambientais/análise , Fluorocarbonos/análise , Células HeLa , Humanos , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/diagnóstico , Itália , Masculino , Tamanho do Órgão/efeitos dos fármacos , Pênis/anatomia & histologia , Pênis/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Sêmen/química , Sêmen/efeitos dos fármacos , Análise do Sêmen , Testículo/anatomia & histologia , Testículo/efeitos dos fármacos , Testosterona/sangue , Adulto Jovem
18.
Sci Rep ; 8(1): 4080, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511224

RESUMO

Trypsin-like proteases are synthesized as zymogens and activated through a mechanism that folds the active site for efficient binding and catalysis. Ligand binding to the active site is therefore a valuable source of information on the changes that accompany zymogen activation. Using the physiologically relevant transition of the clotting zymogen prothrombin to the mature protease thrombin, we show that the mechanism of ligand recognition follows selection within a pre-existing ensemble of conformations with the active site accessible (E) or inaccessible (E*) to binding. Prothrombin exists mainly in the E* conformational ensemble and conversion to thrombin produces two dominant changes: a progressive shift toward the E conformational ensemble triggered by removal of the auxiliary domains upon cleavage at R271 and a drastic drop of the rate of ligand dissociation from the active site triggered by cleavage at R320. Together, these effects produce a significant (700-fold) increase in binding affinity. Limited proteolysis reveals how the E*-E equilibrium shifts during prothrombin activation and influences exposure of the sites of cleavage at R271 and R320. These new findings on the molecular underpinnings of prothrombin activation are relevant to other zymogens with modular assembly involved in blood coagulation, complement and fibrinolysis.


Assuntos
Protrombina/química , Protrombina/metabolismo , Trombina/química , Trombina/metabolismo , Domínio Catalítico , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Cinética , Ligação Proteica , Conformação Proteica , Proteólise
19.
Biotechnol Appl Biochem ; 65(1): 69-80, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29230873

RESUMO

The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin.


Assuntos
Aminoácidos/química , Hirudinas/química , Engenharia de Proteínas , Trombina/química , Aminoácidos/metabolismo , Hirudinas/metabolismo , Modelos Moleculares , Estrutura Molecular , Eletricidade Estática , Relação Estrutura-Atividade , Trombina/metabolismo
20.
Biochem J ; 474(22): 3767-3781, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28963346

RESUMO

Onconase® (ONC), a protein extracted from the oocytes of the Rana pipiens frog, is a monomeric member of the secretory 'pancreatic-type' RNase superfamily. Interestingly, ONC is the only monomeric ribonuclease endowed with a high cytotoxic activity. In contrast with other monomeric RNases, ONC displays a high cytotoxic activity. In this work, we found that ONC spontaneously forms dimeric traces and that the dimer amount increases about four times after lyophilization from acetic acid solutions. Differently from RNase A (bovine pancreatic ribonuclease) and the bovine seminal ribonuclease, which produce N- and C-terminal domain-swapped conformers, ONC forms only one dimer, here named ONC-D. Cross-linking with divinylsulfone reveals that this dimer forms through the three-dimensional domain swapping of its N-termini, being the C-terminus blocked by a disulfide bond. Also, a homology model is proposed for ONC-D, starting from the well-known structure of RNase A N-swapped dimer and taking into account the results obtained from spectroscopic and stability analyses. Finally, we show that ONC is more cytotoxic and exerts a higher apoptotic effect in its dimeric rather than in its monomeric form, either when administered alone or when accompanied by the chemotherapeutic drug gemcitabine. These results suggest new promising implications in cancer treatment.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ribonucleases/metabolismo , Ribonucleases/farmacologia , Adenocarcinoma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Modelos Moleculares , Neoplasias Pancreáticas/tratamento farmacológico , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Ribonucleases/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...