Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760451

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive cancer that lacks specific molecular targets that are often used for therapy. The refractory rate of TNBC to broad-spectrum chemotherapy remains high; however, the combination of newly developed treatments with the current standard of care has delivered promising anti-tumor effects. One mechanism employed by TNBC to avoid cell death is the increased expression of the anti-apoptotic protein, myeloid cell leukemia 1 (MCL1). Multiple studies have demonstrated that increased MCL1 expression enables resistance to platinum-based chemotherapy. In addition to suppressing apoptosis, we recently demonstrated that MCL1 also binds and negatively regulates the transcriptional activity of TP73. TP73 upregulation is a critical driver of cisplatin-induced DNA damage response, and ultimately, cell death. We therefore sought to determine if the coadministration of an MCL1-targeted inhibitor with cisplatin could produce a synergistic response in TNBC. This study demonstrates that the MCL1 inhibitor, S63845, combined with cisplatin synergizes by inducing apoptosis while also decreasing proliferation in a subset of TNBC cell lines. The use of combined MCL1 inhibitors with cisplatin in TNBC effectively initiates TAp73 anti-tumor effects on cell cycle arrest and apoptosis. This observation provides a molecular profile that can be exploited to identify sensitive TNBCs.

2.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761989

RESUMO

Glioblastoma (GBM) remains an incurable disease with an extremely high five-year recurrence rate. We studied apoptosis in glioma stem cells (GSCs) in response to HDAC inhibition (HDACi) combined with MEK1/2 inhibition (MEKi) or BCL-2 family inhibitors. MEKi effectively combined with HDACi to suppress growth, induce cell cycle defects, and apoptosis, as well as to rescue the expression of the pro-apoptotic BH3-only proteins BIM and BMF. A RNAseq analysis of GSCs revealed that HDACi repressed the pro-survival BCL-2 family genes MCL1 and BCL-XL. We therefore replaced MEKi with BCL-2 family inhibitors and observed enhanced apoptosis. Conversely, a ligand for the cancer stem cell receptor CD44 led to reductions in BMF, BIM, and apoptosis. Our data strongly support further testing of HDACi in combination with MEKi or BCL-2 family inhibitors in glioma.

3.
J Biol Chem ; 299(6): 104778, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142223

RESUMO

The maturation of RNA from its nascent transcription to ultimate utilization (e.g., translation, miR-mediated RNA silencing, etc.) involves an intricately coordinated series of biochemical reactions regulated by RNA-binding proteins (RBPs). Over the past several decades, there has been extensive effort to elucidate the biological factors that control specificity and selectivity of RNA target binding and downstream function. Polypyrimidine tract binding protein 1 (PTBP1) is an RBP that is involved in all steps of RNA maturation and serves as a key regulator of alternative splicing, and therefore, understanding its regulation is of critical biologic importance. While several mechanisms of RBP specificity have been proposed (e.g., cell-specific expression of RBPs and secondary structure of target RNA), recently, protein-protein interactions with individual domains of RBPs have been suggested to be important determinants of downstream function. Here, we demonstrate a novel binding interaction between the first RNA recognition motif 1 (RRM1) of PTBP1 and the prosurvival protein myeloid cell leukemia-1 (MCL1). Using both in silico and in vitro analyses, we demonstrate that MCL1 binds a novel regulatory sequence on RRM1. NMR spectroscopy reveals that this interaction allosterically perturbs key residues in the RNA-binding interface of RRM1 and negatively impacts RRM1 association with target RNA. Furthermore, pulldown of MCL1 by endogenous PTBP1 verifies that these proteins interact in an endogenous cellular environment, establishing the biological relevance of this binding event. Overall, our findings suggest a novel mechanism of regulation of PTBP1 in which a protein-protein interaction with a single RRM can impact RNA association.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Processamento Alternativo/genética , Sítios de Ligação/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ligação Proteica/genética , RNA/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...