Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microvasc Res ; 151: 104619, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898331

RESUMO

Because of the high mortality and morbidity rate of breast cancer, successful management of the disease requires synthesis of novel compounds. To this end, ongoing attempts to create new candidates include synthesis of multinuclear metal complexes. The high DNA binding affinity and cytotoxic activity of these complexes makes them promising as breast cancer treatments. This study investigated anti-growth/cytotoxic effect of the dinuclear Pd(II) complex on breast cancer cell lines (MCF-7, MDA-MB-231) using various methods of staining, flow cytometry, and immunoblotting. The study conducted colony formation, invasion, and migration assays were to assess the effect of the complex on metastasis. Increased caspase-3/7 levels and positive annexin V staining were observed in both cell lines, proving apoptosis. Altered TNFR1 and TRADD expression with caspase-8 cleavage followed by BCL-2 inactivation with loss of mitochondrial membrane potential confirmed the presence of apoptosis in MCF-7 and MDA-MB-231, regardless of p53 expression status. The results implied anti-migration properties. Finally, the study used the CAM assay to assess antiangiogenic properties and showed that the complex inhibited angiogenesis. The study concluded the dinuclear Pd(II) complex warrants further in vivo experiments to show its potential in the treatment of breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Apoptose , Antineoplásicos/química , Células MCF-7 , Linhagem Celular Tumoral , Proliferação de Células
2.
Int J Biochem Cell Biol ; 155: 106360, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587800

RESUMO

Epibrassinolide is a member of brassinosteroids with a polyhydroxysteroid structure similar to steroid hormones of vertebrates. It was shown that EBR decreased cell proliferation and induced apoptosis in different colon cancer cell lines without exerting a cytotoxic effect in epithelial fetal human colon cells. This finding highlighted the potential of epibrassinolide in clinical therapeutic setup. In our previous studies, we showed that epibrassinolide was able to induce apoptosis via endoplasmic reticulum stress. Recently, we also showed that endoplasmic reticulum and apoptotic stresses can be prevented via autophagic induction in non-cancerous epithelial or aggressive forms of cancer cells. Therefore, here in this study, we evaluated the anti-tumoral effect of epibrassinolide as well as the autophagy involvement in the aggressive forms of colon cancer cell lines as well as in vivo SCID mouse xenograft colon cancer model for the first time. For this purpose, SCID mouse model was used for subcutaneous injection of colon cancer cells in matrigel formulation. We found that autophagy is induced in both in vitro and in vivo models. Following tumor formation, SCID mice were treated daily with increasing concentrations of epibrassinolide for two weeks. Our findings showed that EBR inhibited the volume and diameter of the tumor in a dose-dependent manner by causing cell cycle arrest. Therefore our data suggest that epibrassinolide exerts a cytostatic effect on the agrressive form of colon cancer model in vivo, without affecting endoplasmic reticulum stress and the induction of autophagy might have role in this effect of epibrassinolide.


Assuntos
Neoplasias do Colo , Estresse do Retículo Endoplasmático , Camundongos , Animais , Humanos , Camundongos SCID , Xenoenxertos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Apoptose , Proliferação de Células , Divisão Celular , Autofagia , Linhagem Celular Tumoral
3.
Amino Acids ; 52(6-7): 871-891, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32449072

RESUMO

Epibrassinolide (EBR), a polyhydroxysteroid belongs to plant growth regulator family, brassinosteroids and has been shown to have a similar chemical structure to mammalian steroid hormones. Our findings indicated that EBR could trigger apoptosis in cancer cells via induction of endoplasmic reticulum (ER) stress, caused by protein folding disturbance in the ER. Normal cells exhibited a remarkable resistance to EBR treatment and avoid from apoptotic cell death. The unfolded protein response clears un/misfolded proteins and restore ER functions. When stress is chronic, cells tend to die due to improper cellular functions. To understand the effect of EBR in non-malign cells, mouse embryonic fibroblast (MEF) cells were investigated in detail for ER stress biomarkers, autophagy, and polyamine metabolism in this study. Evolutionary conserved autophagy mechanism is a crucial cellular process to clean damaged organelles and protein aggregates through lysosome under the control of autophagy-related genes (ATGs). Cells tend to activate autophagy to promote cell survival under stress conditions. Polyamines are polycationic molecules playing a role in the homeostasis of important cellular events such as cell survival, growth, and, proliferation. The administration of PAs has been markedly extended the lifespan of various organisms via inducing autophagy and inhibiting oxidative stress. Our data indicated that ER stress is induced following EBR treatment in MEF cells as well as MEF Atg5-/- cells. In addition, autophagy is activated following EBR treatment by targeting PI3K/Akt/mTOR in wildtype (wt) cells. However, EBR-induced autophagy targets ULK1 in MEF cells lacking Atg5 expression. Besides, EBR treatment depleted the PA pool in MEF cells through the alterations of metabolic enzymes. The administration of Spd with EBR further increased autophagic vacuole formation. In conclusion, EBR is an anticancer drug candidate with selective cytotoxicity for cancer cells, in addition the induction of autophagy and PA metabolism are critical for responses of normal cells against EBR.


Assuntos
Proteína 5 Relacionada à Autofagia/deficiência , Autofagia/efeitos dos fármacos , Brassinosteroides/efeitos adversos , Estresse do Retículo Endoplasmático , Esteroides Heterocíclicos/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição CHOP/metabolismo
4.
Turk J Biol ; 44(6): 417-426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33402868

RESUMO

Epibrassinolide (EBR), a plant-derived polyhydroxylated derivative of 5α-cholestane, structurally shows similarities to animal steroid hormones. According to the present study, EBR treatment triggered a significant stress response via activating ER stress, autophagy, and apoptosis in cancer cells. EBR could also increase Akt phosphorylation in vitro. While the activation of Akt resulted in cellular metabolic activation in normal cells to proceed with cell survival, a rapid stress response was induced in cancer cells to reduce survival. Therefore, Akt as a mediator of cellular survival and death decision pathways is a crucial target in cancer cells. In this study, we determined that EBR induces stress responses through activating Akt, which reduced the mTOR complex I (mTORC1) activation in SW480 and DLD-1 colon cancer cells. As a consequence, EBR triggered macroautophagy and led to lipidation of LC3 most efficiently in SW480 cells. The cotreatment of spermidine (Spd) with EBR increased lipidation of LC3 synergistically in both cell lines. We also found that EBR promoted polyamine catabolism in SW480 cells. The retention of polyamine biosynthesis was remarkable following EBR treatment. We suggested that EBR-mediated Akt activation might determine the downstream cellular stress responses to induce autophagy related to polyamines.

5.
Mol Carcinog ; 56(6): 1603-1619, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28112451

RESUMO

Epibrassinolide (EBR), a member of brassinostreoids plant hormones with cell proliferation promoting role in plants, is a natural polyhydroxysteroid with structural similarity to steroid hormones of vertebrates. EBR has antiproliferative and apoptosis-inducing effect in various cancer cells. Although EBR has been shown to affect survival and mitochondria-mediated apoptosis pathways in a p53-independent manner, the exact molecular targets of EBR are still under investigation. Our recent SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture) data showed that the most significantly altered protein after EBR treatment was calreticulin (CALR). CALR, a chaperone localized in endoplasmic reticulum (ER) lumen, plays role in protein folding and buffering Ca2+ ions. The alteration of CALR may cause ER stress and unfolded protein response correspondingly the induction of apoptosis. Unfolded proteins are conducted to 26S proteasomal degradation following ubiquitination. Our study revealed that EBR treatment caused ER stress and UPR by altering CALR expression causing caspase-dependent apoptosis in HCT 116, HT29, DLD-1, and SW480 colon cancer cells. Furthermore, 48 h EBR treatment did not caused UPR in Fetal Human Colon cells (FHC) and Mouse Embryonic Fibroblast cells (MEF). In addition our findings showed that HCT 116 colon cancer cells lacking Bax and Puma expression still undergo UPR and related apoptosis. CALR silencing and rapamycin co-treatment prevented EBR-induced UPR and apoptosis, whereas 26S proteasome inhibition further increased the effect of EBR in colon cancer cells. All these findings showed that EBR is an ER stress and apoptotic inducer in colon cancer cells without affecting non-malignant cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Brassinosteroides/química , Brassinosteroides/farmacologia , Calreticulina/metabolismo , Neoplasias do Colo/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Células HCT116 , Humanos , Camundongos , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...