Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1291673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077951

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease in which non-cell-autonomous processes have been proposed as its cause. Non-neuronal cells that constitute the environment around motor neurons are known to mediate the pathogenesis of ALS. Perivascular macrophages (PVM) are immune cells that reside between the blood vessels of the central nervous system and the brain parenchyma; PVM are components of the neurovascular unit and regulate the integrity of the blood-spinal cord barrier (BSCB). However, it is not known whether regulation of BSCB function by PVM is involved in the pathogenesis of ALS. Here, we used SOD1G93A mice to investigate whether PVM is involved in the pathogenesis of ALS. Immunostaining revealed that the number of PVM was increased during the disease progression of ALS in the spinal cord. We also found that both anti-inflammatory Lyve1+ PVM and pro-inflammatory MHCII+ PVM subtypes were increased in SOD1G93A mice, and that subtype heterogeneity was shifted toward MHCII+ PVM compared to wild-type (WT) mice. Then we depleted PVM selectively and continuously in SOD1G93A mice by repeated injection of clodronate liposomes into the cerebrospinal fluid and assessed motor neuron number, neurological score, and survival. Results showed that PVM depletion prevented the loss of motoneurons, slowed disease progression, and prolonged survival. Further histological analysis showed that PVM depletion prevents BSCB collapse by ameliorating the reduction of extracellular matrix proteins necessary for the maintenance of barrier function. These results indicate that PVM are involved in the pathogenesis of ALS, as PVM degrades the extracellular matrix and reduces BSCB function, which may affect motor neuron loss and disease progression. Targeting PVM interventions may represent a novel ALS therapeutic strategy.

2.
J Artif Organs ; 24(2): 120-125, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33136218

RESUMO

A suitable index is needed for hemolysis tests that use low-flow pumps, such as pediatric blood pumps or blood purification pumps. To create such an index, the present study investigates the change of plasma-free hemoglobin in the pump circuit with time and the change of the hemolysis rate with flow rate and impeller rotational speed. The results show that the hemolysis rate or the increase rate of the total free hemoglobin are suitable measures for hemolysis evaluation for low-flow pumps.


Assuntos
Coração Auxiliar , Hemólise , Algoritmos , Animais , Bovinos , Hemodinâmica , Hemoglobinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...