Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 15(12): 2958-2969, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307988

RESUMO

The use of unconventional yeast species in human-driven fermentations has attracted a lot of attention in the last few years. This tool allows the alcoholic beverage industries to solve problems related to climate change or the consumer demand for newer high-quality products. In this sense, one of the most attractive species is Saccharomyces kudriavzevii, which shows interesting fermentative traits such as the increased and diverse aroma compound production in wines. Specifically, it has been observed that different isolates of this species can produce higher amounts of higher alcohols such as phenylethanol compared with Saccharomyces cerevisiae. In this work, we have shed light on this feature relating it to the S. kudriavzevii aromatic amino acid anabolic pathway in which the enzyme Aro4p plays an essential role. Unexpectedly, we observed that the presence of the S. kudriavzevii ARO4 variant reduces phenylethanol production compared with the S. cerevisiae ARO4 allele. Our experiments suggest that this can be explained by increased feedback inhibition, which might be a consequence of the changes detected in the Aro4p amino end such as L26 Q24 that have been under positive selection in the S. kudriavzevii specie.


Assuntos
Álcool Feniletílico , Saccharomyces , Vinho , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Álcoois/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Vinho/análise , Fermentação , Álcool Feniletílico/metabolismo
2.
Microb Biotechnol ; 15(8): 2281-2291, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35536034

RESUMO

Phenylethanol (PE) and phenylethyl acetate (PEA) are commonly desired compounds in wine because of their rose-like aroma. The yeast S. cerevisiae produces the PE either through de novo biosynthesis by shikimate pathway followed by the Ehrlich pathway or the direct phenylalanine catabolism via Ehrlich pathway, and then converted into PEA. Previous work demonstrated that, compared to S. cerevisiae, other Saccharomyces species, such as S. kudriavzevii and S. uvarum, produce higher concentrations of PE and PEA from the precursor phenylalanine, which indicates differential activities of the biosynthetic-involved enzymes. A previous in-silico analysis suggested that the transcriptional activator Aro80p is one of the best candidates to explain these differences. An improved functional analysis identified significant radical amino acid changes in the S. uvarum and S. kudriavzevii Aro80p that could impact the expression of the catabolic genes ARO9 and ARO10, and hence, the production of PE from phenylalanine. Indeed, wine S. cerevisiae strains carrying the S. uvarum and S. kudriavzevii ARO80 alleles increased the production of both compounds in the presence of phenylalanine by increasing the expression of ARO9 and ARO10. This study provides novel insights of the unidentified Aro80p regulatory region and the potential usage of alternatives ARO80 alleles to enhance the PE and PEA concentration in wine.


Assuntos
Álcool Feniletílico , Vinho , Acetatos/metabolismo , Fermentação , Odorantes/análise , Fenilalanina/análise , Fenilalanina/metabolismo , Álcool Feniletílico/análise , Álcool Feniletílico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/análise
3.
PLoS Genet ; 17(11): e1009872, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762651

RESUMO

Different species can find convergent solutions to adapt their genome to the same evolutionary constraints, although functional convergence promoted by chromosomal rearrangements in different species has not previously been found. In this work, we discovered that two domesticated yeast species, Saccharomyces cerevisiae, and Saccharomyces uvarum, acquired chromosomal rearrangements to convergently adapt to the presence of sulfite in fermentation environments. We found two new heterologous chromosomal translocations in fermentative strains of S. uvarum at the SSU1 locus, involved in sulfite resistance, an antimicrobial additive widely used in food production. These are convergent events that share similarities with other SSU1 locus chromosomal translocations previously described in domesticated S. cerevisiae strains. In S. uvarum, the newly described VIIXVI and XIXVI chromosomal translocations generate an overexpression of the SSU1 gene and confer increased sulfite resistance. This study highlights the relevance of chromosomal rearrangements to promote the adaptation of yeast to anthropic environments.


Assuntos
Adaptação Biológica/genética , Anti-Infecciosos/metabolismo , Fermentação , Conservantes de Alimentos/metabolismo , Saccharomyces cerevisiae/fisiologia , Saccharomyces/fisiologia , Sulfitos/metabolismo , Proteínas de Transporte de Ânions/genética , Cromossomos Fúngicos , Humanos , Filogenia , Regiões Promotoras Genéticas , Saccharomyces/genética , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Translocação Genética
4.
J Biotechnol ; 118(2): 167-76, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-15963591

RESUMO

Glucoamylase produced by amylolytic strains of Saccharomyces cerevisiae (var. diastaticus) lacks a starch binding domain that is present in homologous glucoamylases from Aspergillus niger and other filamentous fungi. The absence of the binding domain makes the enzyme inefficient against raw starch and hence unsuitable for most biotechnological applications. We have constructed a hybrid glucoamylase-encoding gene by in-frame fusion of the S. cerevisiae STA1 gene and DNA fragment that encodes the starch binding domain of A. niger glucoamylase. The hybrid enzyme resulting from expression of the chimeric gene in S. cerevisiae has substrate binding capability and hydrolyses insoluble starch, properties not present in the original yeast enzyme.


Assuntos
Glucana 1,4-alfa-Glucosidase , Engenharia de Proteínas , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/enzimologia , Aspergillus niger/química , Aspergillus niger/metabolismo , Ativação Enzimática/genética , Genes Fúngicos , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Hidrólise , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Amido/química , Amido/genética , Amido/metabolismo , Especificidade por Substrato
5.
Yeast ; 21(5): 379-88, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15116339

RESUMO

The sequence of the STA1-encoded glucoamylase of amylolytic Saccharomyces cerevisiae (var. diastaticus) strains shows two well-defined regions: an amino-terminal part rich in serine and threonine residues and a carboxy-terminal part very similar to the catalytic domain of other fungal glucoamylases. A version of the enzyme in which most of the amino-terminal region was deleted still has glucoamylase activity, indicating that the remaining carboxy-terminal part forms a functional catalytic domain. Homology-based models of the two parts of the protein have been obtained. As expected, the shortened form of the enzyme is very similar to the catalytic domain of related glucoamylases of known structure. However, the amino-terminal part yielded a structure revealing an unexpected similarity to bacterial invasins, suggesting functional connections between several yeast proteins homologous to STA1-encoded glucoamylase and invasins. A characteristic of Saccharomyces glucoamylase in its native form is its extreme degree of glycosylation. Despite its high molecular mass (about 300 kDa), and in contrast with what occurs with other extracellular glycoproteins produced by yeast, the enzyme does not remain attached to the cell wall, being fully and efficiently secreted into the medium, even when it is produced in large amounts by overexpression of its gene.


Assuntos
Genes Fúngicos , Glucana 1,4-alfa-Glucosidase/química , Glucana 1,4-alfa-Glucosidase/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , DNA Fúngico/genética , Glicosilação , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...