Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(13): 6622-6633, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37246710

RESUMO

The specificity of DNMT1 for hemimethylated DNA is a central feature for the inheritance of DNA methylation. We investigated this property in competitive methylation kinetics using hemimethylated (HM), hemihydroxymethylated (OH) and unmethylated (UM) substrates with single CpG sites in a randomized sequence context. DNMT1 shows a strong flanking sequence dependent HM/UM specificity of 80-fold on average, which is slightly enhanced on long hemimethylated DNA substrates. To explain this strong effect of a single methyl group, we propose a novel model in which the presence of the 5mC methyl group changes the conformation of the DNMT1-DNA complex into an active conformation by steric repulsion. The HM/OH preference is flanking sequence dependent and on average only 13-fold, indicating that passive DNA demethylation by 5hmC generation is not efficient in many flanking contexts. The CXXC domain of DNMT1 has a moderate flanking sequence dependent contribution to HM/UM specificity during DNA association to DNMT1, but not if DNMT1 methylates long DNA molecules in processive methylation mode. Comparison of genomic methylation patterns from mouse ES cell lines with various deletions of DNMTs and TETs with our data revealed that the UM specificity profile is most related to cellular methylation patterns, indicating that de novo methylation activity of DNMT1 shapes the DNA methylome in these cells.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA/química , Metilação de DNA , Metilases de Modificação do DNA/genética , Epigênese Genética
2.
Commun Biol ; 6(1): 138, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732350

RESUMO

While cytosine-C5 methylation of DNA is an essential regulatory system in higher eukaryotes, the presence and relevance of 6-methyladenine (m6dA) in human cells is controversial. To study the role of m6dA in human DNA, we introduced it in human cells at a genome-wide scale at GANTC and GATC sites by expression of bacterial DNA methyltransferases and observed concomitant reductions in cell viability, in particular after global GANTC methylation. We identified several genes that are directly regulated by m6dA in a GANTC context. Upregulated genes showed m6dA-dependent reduction of H3K27me3 suggesting that the PRC2 complex is inhibited by m6dA. Genes downregulated by m6dA showed enrichment of JUN family transcription factor binding sites. JUN binds m6dA containing DNA with reduced affinity suggesting that m6dA can reduce the recruitment of JUN transcription factors to target genes. Our study documents that global introduction of m6dA in human DNA has physiological effects. Furthermore, we identified a set of target genes which are directly regulated by m6dA in human cells, and we defined two molecular pathways with opposing effects by which artificially introduced m6dA in GANTC motifs can directly control gene expression and phenotypes of human cells.


Assuntos
Metilação de DNA , DNA , Humanos , Células HEK293 , DNA/genética , Expressão Gênica
3.
Biochimie ; 208: 66-74, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36528185

RESUMO

The DNMT3A DNA methyltransferase is an important epigenetic enzyme that is frequently mutated in cancers, particularly in AML. The heterozygous R736H mutation in the FF-interface of the tetrameric enzyme is the second most frequently observed DNMT3A cancer mutation, but its pathogenic mechanism is unclear. We show here that R736H leads to a moderate reduction in catalytic activity of 20-40% depending on the substrate, but no changes in CpG specificity, flanking sequence preferences and subnuclear localization. Strikingly, R736H showed a very strong stimulation by DNMT3L and the R736H/DNMT3L complex was 3-fold more active than WT/DNMT3L. Similarly, formation of mixed R736H/DNMT3A WT FF-interfaces led to an increased activity. R736H/DNMT3L and mixed R736H/DNMT3A WT FF-interfaces were less stable than interfaces not involving R736H, suggesting that an increased flexibility of the mixed interfaces stimulates catalytic activity. Our data suggest that aberrant activity of DNMT3A R736H may lead to DNA hypermethylation in cancer cells which could cause changes in gene expression.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Fatores de Transcrição , Heterozigoto , Mutação , DNA
4.
J Biol Chem ; 298(10): 102462, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067881

RESUMO

Specific DNA methylation at CpG and non-CpG sites is essential for chromatin regulation. The DNA methyltransferase DNMT3A interacts with target sites surrounded by variable DNA sequences with its TRD and RD loops, but the functional necessity of these interactions is unclear. We investigated CpG and non-CpG methylation in a randomized sequence context using WT DNMT3A and several DNMT3A variants containing mutations at DNA-interacting residues. Our data revealed that the flanking sequence of target sites between the -2 and up to the +8 position modulates methylation rates >100-fold. Non-CpG methylation flanking preferences were even stronger and favor C(+1). R836 and N838 in concert mediate recognition of the CpG guanine. R836 changes its conformation in a flanking sequence-dependent manner and either contacts the CpG guanine or the +1/+2 flank, thereby coupling the interaction with both sequence elements. R836 suppresses activity at CNT sites but supports methylation of CAC substrates, the preferred target for non-CpG methylation of DNMT3A in cells. N838 helps to balance this effect and prevent the preference for C(+1) from becoming too strong. Surprisingly, we found L883 reduces DNMT3A activity despite being highly conserved in evolution. However, mutations at L883 disrupt the DNMT3A-specific DNA interactions of the RD loop, leading to altered flanking sequence preferences. Similar effects occur after the R882H mutation in cancer cells. Our data reveal that DNMT3A forms flexible and interdependent interaction networks with the CpG guanine and flanking residues that ensure recognition of the CpG and efficient methylation of the cytosine in contexts of variable flanking sequences.


Assuntos
Metilação de DNA , DNA Metiltransferase 3A , Ilhas de CpG , DNA/química , DNA/metabolismo , Metilases de Modificação do DNA/genética , Guanina , Mutação
5.
Commun Biol ; 5(1): 192, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236925

RESUMO

Recently, the structure of the DNMT3A2/3B3 heterotetramer complex bound to a mononucleosome was reported. Here, we investigate DNA methylation of recombinant unmodified, H3KC4me3 and H3KC36me3 containing mononucleosomes by DNMT3A2, DNMT3A catalytic domain (DNMT3AC) and the DNMT3AC/3B3C complex. We show strong protection of the nucleosomal bound DNA against methylation, but efficient linker-DNA methylation next to the nucleosome core. High and low methylation levels of two specific CpG sites next to the nucleosome core agree well with details of the DNMT3A2/3B3-nucleosome structure. Linker DNA methylation next to the nucleosome is increased in the absence of H3K4me3, likely caused by binding of the H3-tail to the ADD domain leading to relief of autoinhibition. Our data demonstrate a strong stimulatory effect of H3K36me3 on linker DNA methylation, which is independent of the DNMT3A-PWWP domain. This observation reveals a direct functional role of H3K36me3 on the stimulation of DNA methylation, which could be explained by hindering the interaction of the H3-tail and the linker DNA. We propose an evolutionary model in which the direct stimulatory effect of H3K36me3 on DNA methylation preceded its signaling function, which could explain the evolutionary origin of the widely distributed "active gene body-H3K36me3-DNA methylation" connection.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Ligação Proteica
6.
J Mol Biol ; 434(7): 167482, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131259

RESUMO

Somatic R882H DNMT3A mutations occur frequently in AML, but their pathogenic mechanism is unclear. As R882H mutations usually are heterozygous, wildtype (WT) and R882H subunits co-exist in affected cells. R882 is located in the RD interface of DNMT3A tetramers, which forms the DNA binding site. R882H causes strong changes in the flanking sequence preferences of DNMT3A. Here, we analyzed flanking sequence preferences for CGNNNN sites showing that most disfavored sites are methylated 4-5 fold slower by R882H than WT, while it methylates most preferred sites 2-fold faster. Overall, R882H was more active than WT at 13% and less active at 52% of all CGNNNN sites. We prepared mixed DNMT3A heterotetramers containing WT and R882H subunits and show that mixed complexes preferentially assemble with an R882H/R882H RD interface. Structural comparisons and MD simulations confirmed the conclusion that the R882H RD interface is more stable than that of WT, in part because H882 forms an inter-subunit contact in the RD interface, while R882 contacts the DNA. As the subunits at the RD interface contribute the two active centers to the DNMT3A tetramer, R882H characteristic flanking sequence preferences of DNMT3A were observed in mixed tetrameric complexes containing WT and R882H subunits, and they are not diluted by the "averaged" effects of mixed or WT interfaces. Hence, R882H has a dominant effect on the flanking sequence preferences and other catalytic properties of DNMT3A in samples containing WT and R882H subunits, which may explain its pathogenic effect in heterozygous state.


Assuntos
DNA Metiltransferase 3A , Leucemia Mieloide Aguda , Metilação de DNA , DNA Metiltransferase 3A/química , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Sequências Repetidas Terminais
7.
Commun Biol ; 5(1): 92, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075236

RESUMO

TET dioxygenases convert 5-methylcytosine (5mC) preferentially in a CpG context into 5-hydroxymethylcytosine (5hmC) and higher oxidized forms, thereby initiating DNA demethylation, but details regarding the effects of the DNA sequences flanking the target 5mC site on TET activity are unknown. We investigated oxidation of libraries of DNA substrates containing one 5mC or 5hmC residue in randomized sequence context using single molecule readout of oxidation activity and sequence and show pronounced 20 and 70-fold flanking sequence effects on the catalytic activities of TET1 and TET2, respectively. Flanking sequence preferences were similar for TET1 and TET2 and also for 5mC and 5hmC substrates. Enhanced flanking sequence preferences were observed at non-CpG sites together with profound effects of flanking sequences on the specificity of TET2. TET flanking sequence preferences are reflected in genome-wide and local patterns of 5hmC and DNA demethylation in human and mouse cells indicating that they influence genomic DNA modification patterns in combination with locus specific targeting of TET enzymes.


Assuntos
5-Metilcitosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/metabolismo , Animais , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Biologia Computacional , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Genômica , Camundongos , Proteínas Proto-Oncogênicas/genética , Espectrometria de Massas em Tandem
8.
J Mol Biol ; 433(19): 167186, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34375615

RESUMO

DNA interacting enzymes recognize their target sequences embedded in variable flanking sequence context. The influence of flanking sequences on enzymatic activities of DNA methyltransferases (DNMTs) can be systematically studied with "deep enzymology" approaches using pools of double-stranded DNA substrates, which contain target sites in random flanking sequence context. After incubation with DNMTs and bisulfite conversion, the methylation states and flanking sequences of individual DNA molecules are determined by NGS. Deep enzymology studies with different human and mouse DNMTs revealed strong influences of flanking sequences on their CpG and non-CpG methylation activity and the structures of DNMT-DNA complexes. Differences in flanking sequence preferences of DNMT3A and DNMT3B were shown to be related to the prominent role of DNMT3B in the methylation of human SATII repeat elements. Mutational studies in DNMT3B discovered alternative interaction networks between the enzyme and the DNA leading to a partial equalization of the effects of different flanking sequences. Structural studies in DNMT1 revealed striking correlations between enzymatic activities and flanking sequence dependent conformational changes upon DNA binding. Correlation of the biochemical data with cellular methylation patterns demonstrated that flanking sequence preferences are an important parameter that influences genomic DNA methylation patterns together with other mechanisms targeting DNMTs to genomic sites.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA/genética , DNA/metabolismo , Animais , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/química , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica
9.
Nucleic Acids Res ; 49(14): 8294-8308, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289056

RESUMO

DNMT3A/3L heterotetramers contain two active centers binding CpG sites at 12 bp distance, however their interaction with DNA not containing this feature is unclear. Using randomized substrates, we observed preferential co-methylation of CpG sites with 6, 9 and 12 bp spacing by DNMT3A and DNMT3A/3L. Co-methylation was favored by AT bases between the 12 bp spaced CpG sites consistent with their increased bending flexibility. SFM analyses of DNMT3A/3L complexes bound to CpG sites with 12 bp spacing revealed either single heterotetramers inducing 40° DNA bending as observed in the X-ray structure, or two heterotetramers bound side-by-side to the DNA yielding 80° bending. SFM data of DNMT3A/3L bound to CpG sites spaced by 6 and 9 bp revealed binding of two heterotetramers and 100° DNA bending. Modeling showed that for 6 bp distance between CpG sites, two DNMT3A/3L heterotetramers could bind side-by-side on the DNA similarly as for 12 bp distance, but with each CpG bound by a different heterotetramer. For 9 bp spacing our model invokes a tetramer swap of the bound DNA. These additional DNA interaction modes explain how DNMT3A and DNMT3A/3L overcome their structural preference for CpG sites with 12 bp spacing during the methylation of natural DNA.


Assuntos
Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA/genética , Sítios de Ligação/genética , DNA/ultraestrutura , DNA (Citosina-5-)-Metiltransferases/ultraestrutura , DNA Metiltransferase 3A , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/ultraestrutura , Humanos , Domínios Proteicos/genética
10.
Nucleic Acids Res ; 48(20): 11495-11509, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33105482

RESUMO

DNA methyltransferases interact with their CpG target sites in the context of variable flanking sequences. We investigated DNA methylation by the human DNMT3B catalytic domain using substrate pools containing CpX target sites in randomized flanking context and identified combined effects of CpG recognition and flanking sequence interaction together with complex contact networks involved in balancing the interaction with different flanking sites. DNA methylation rates were more affected by flanking sequences at non-CpG than at CpG sites. We show that T775 has an essential dynamic role in the catalytic mechanism of DNMT3B. Moreover, we identify six amino acid residues in the DNA-binding interface of DNMT3B (N652, N656, N658, K777, N779, and R823), which are involved in the equalization of methylation rates of CpG sites in favored and disfavored sequence contexts by forming compensatory interactions to the flanking residues including a CpG specific contact to an A at the +1 flanking site. Non-CpG flanking preferences of DNMT3B are highly correlated with non-CpG methylation patterns in human cells. Comparison of the flanking sequence preferences of human and mouse DNMT3B revealed subtle differences suggesting a co-evolution of flanking sequence preferences and cellular DNMT targets.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Sequência de Bases , Domínio Catalítico , Ilhas de CpG , DNA/química , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Humanos , Ligação Proteica , DNA Metiltransferase 3B
11.
Nat Commun ; 11(1): 3723, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709850

RESUMO

DNA methylation maintenance by DNMT1 is an essential process in mammals but molecular mechanisms connecting DNA methylation patterns and enzyme activity remain elusive. Here, we systematically analyzed the specificity of DNMT1, revealing a pronounced influence of the DNA sequences flanking the target CpG site on DNMT1 activity. We determined DNMT1 structures in complex with preferred DNA substrates revealing that DNMT1 employs flanking sequence-dependent base flipping mechanisms, with large structural rearrangements of the DNA correlating with low catalytic activity. Moreover, flanking sequences influence the conformational dynamics of the active site and cofactor binding pocket. Importantly, we show that the flanking sequence preferences of DNMT1 highly correlate with genomic methylation in human and mouse cells, and 5-azacytidine triggered DNA demethylation is more pronounced at CpG sites with flanks disfavored by DNMT1. Overall, our findings uncover the intricate interplay between CpG-flanking sequence, DNMT1-mediated base flipping and the dynamic landscape of DNA methylation.


Assuntos
Sequência de Bases , DNA (Citosina-5-)-Metiltransferase 1/química , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , DNA/química , DNA/metabolismo , Animais , Domínio Catalítico , Cristalografia por Raios X , DNA (Citosina-5-)-Metiltransferase 1/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Cinética , Camundongos Knockout , Modelos Moleculares , Conformação de Ácido Nucleico , Oligonucleotídeos , Conformação Proteica , Especificidade por Substrato
12.
Nat Commun ; 11(1): 3355, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620778

RESUMO

Mammalian DNA methylation patterns are established by two de novo DNA methyltransferases, DNMT3A and DNMT3B, which exhibit both redundant and distinctive methylation activities. However, the related molecular basis remains undetermined. Through comprehensive structural, enzymology and cellular characterization of DNMT3A and DNMT3B, we here report a multi-layered substrate-recognition mechanism underpinning their divergent genomic methylation activities. A hydrogen bond in the catalytic loop of DNMT3B causes a lower CpG specificity than DNMT3A, while the interplay of target recognition domain and homodimeric interface fine-tunes the distinct target selection between the two enzymes, with Lysine 777 of DNMT3B acting as a unique sensor of the +1 flanking base. The divergent substrate preference between DNMT3A and DNMT3B provides an explanation for site-specific epigenomic alterations seen in ICF syndrome with DNMT3B mutations. Together, this study reveals distinctive substrate-readout mechanisms of the two DNMT3 enzymes, implicative of their differential roles during development and pathogenesis.


Assuntos
Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Animais , Domínio Catalítico , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/ultraestrutura , DNA Metiltransferase 3A , Células-Tronco Embrionárias , Ensaios Enzimáticos , Epigênese Genética , Face/anormalidades , Humanos , Camundongos , Mutação , Doenças da Imunodeficiência Primária/genética , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Difração de Raios X , DNA Metiltransferase 3B
13.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941101

RESUMO

Epigenome editing is a promising technology, potentially allowing the stable reprogramming of gene expression profiles without alteration of the DNA sequence. Targeted DNA methylation has been successfully documented by many groups for silencing selected genes, but recent publications have raised concerns regarding its specificity. In the current work, we developed new EpiEditors for programmable DNA methylation in cells with a high efficiency and improved specificity. First, we demonstrated that the catalytically deactivated Cas9 protein (dCas9)-SunTag scaffold, which has been used earlier for signal amplification, can be combined with the DNMT3A-DNMT3L single-chain effector domain, allowing for a strong methylation at the target genomic locus. We demonstrated that off-target activity of this system is mainly due to untargeted freely diffusing DNMT3A-DNMT3L subunits. Therefore, we generated several DNMT3A-DNMT3L variants containing mutations in the DNMT3A part, which reduced their endogenous DNA binding. We analyzed the genome-wide DNA methylation of selected variants and confirmed a striking reduction of untargeted methylation, most pronounced for the R887E mutant. For all potential applications of targeted DNA methylation, the efficiency and specificity of the treatment are the key factors. By developing highly active targeted methylation systems with strongly improved specificity, our work contributes to future applications of this approach.


Assuntos
Técnicas de Reprogramação Celular , DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Regulação da Expressão Gênica , Engenharia de Proteínas , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Domínios Proteicos
14.
Nucleic Acids Res ; 47(21): 11355-11367, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31620784

RESUMO

Somatic DNMT3A mutations at R882 are frequently observed in AML patients including the very abundant R882H, but also R882C, R882P and R882S. Using deep enzymology, we show here that DNMT3A-R882H has more than 70-fold altered flanking sequence preferences when compared with wildtype DNMT3A. The R882H flanking sequence preferences mainly differ on the 3' side of the CpG site, where they resemble DNMT3B, while 5' flanking sequence preferences resemble wildtype DNMT3A, indicating that R882H behaves like a DNMT3A/DNMT3B chimera. Investigation of the activity and flanking sequence preferences of other mutations of R882 revealed that they cause similar effects. Bioinformatic analyses of genomic methylation patterns focusing on flanking sequence effects after expression of wildtype DNMT3A and R882H in human cells revealed that genomic methylation patterns reflect the details of the altered flanking sequence preferences of R882H. Concordantly, R882H specific hypermethylation in AML patients was strongly correlated with the R882H flanking sequence preferences. R882H specific DNA hypermethylation events in AML patients were accompanied by R882H specific mis-regulation of several genes with strong cancer connection, which are potential downstream targets of R882H. In conclusion, our data provide novel and detailed mechanistic understanding of the pathogenic mechanism of the DNMT3A R882H somatic cancer mutation.


Assuntos
Região 5'-Flanqueadora/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Arginina/genética , Sítios de Ligação/genética , Domínio Catalítico , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferases/química , DNA Metiltransferase 3A , Células HCT116 , Histidina/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Especificidade por Substrato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...