Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-445787

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-{kappa}B activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-{kappa}B signaling. Nsp14 caused the nuclear translocation of NF-{kappa}B p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5-monophosphate dehydrogenase 2 (IMPDH2) protein, which is known to regulate NF-{kappa}B signaling. We confirmed the Nsp14-IMPDH2 protein interaction and found that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14-mediated NF-{kappa}B activation and cytokine induction. Furthermore, IMDPH2 inhibitors (RIB, MPA) efficiently blocked SARS-CoV-2 infection, indicating that IMDPH2, and possibly NF-{kappa}B signaling, is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in causing the activation of NF-{kappa}B.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-246678

RESUMO

Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. Here we show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS-CoV-2 infections are generally restricted by expression of human IFITM1, IFITM2, and IFITM3, using both gain- and loss-of-function approaches. Mechanistically, restriction of SARS-CoV-2 occurred independently of IFITM3 S-palmitoylation sites, indicating a restrictive capacity that is distinct from reported inhibition of other viruses. In contrast, the IFITM3 amphipathic helix and its amphipathic properties were required for virus restriction. Mutation of residues within the human IFITM3 endocytosis-promoting Yxx{Phi} motif converted human IFITM3 into an enhancer of SARS-CoV-2 infection, and cell-to-cell fusion assays confirmed the ability of endocytic mutants to enhance Spike-mediated fusion with the plasma membrane. Overexpression of TMPRSS2, which reportedly increases plasma membrane fusion versus endosome fusion of SARS-CoV-2, attenuated IFITM3 restriction and converted amphipathic helix mutants into strong enhancers of infection. In sum, these data uncover new pro- and anti-viral mechanisms of IFITM3, with clear distinctions drawn between enhancement of viral infection at the plasma membrane and amphipathicity-based mechanisms used for endosomal virus restriction. Indeed, the net effect of IFITM3 on SARS-CoV-2 infections may be a result of these opposing activities, suggesting that shifts in the balance of these activities could be coopted by viruses to escape this important first line innate defense mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...