Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256855

RESUMO

Individuals with acute malaria infection generated high levels of antibodies that cross-react with the SARS-CoV-2 Spike protein. Cross-reactive antibodies specifically recognized the sialic acid moiety on N-linked glycans of the Spike protein and do not neutralize in vitro SARS-CoV-2. Sero-surveillance is critical for monitoring and projecting disease burden and risk during the pandemic; however, routine use of Spike protein-based assays may overestimate SARS-CoV-2 exposure and population-level immunity in malaria-endemic countries.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253992

RESUMO

Prior to the emergence of antigenically distinct SARS-CoV-2 variants, reinfections were reported infrequently - presumably due to the generation of durable and protective immune responses. However, case reports also suggested that rare, repeated infections may occur as soon as 48 days following initial disease onset. The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection - confirmed by whole virus genome sequencing - 7 months after primary infection. To elucidate the immunological mechanisms responsible for SARS-CoV-2 reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses. The patients immune system was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we also identified the development of neutralizing antibodies and the formation of humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation in this patient. In summary, our study suggests that a low neutralizing antibody presence alone is not sufficient to confer resistance against reinfection. Thus, patients with solid organ transplantation, or patients who are otherwise immunosuppressed, who recover from infection with SARS-CoV-2 may not develop sufficient protective immunity and are at risk of reinfection.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250452

RESUMO

Pregnant women appear to be at increased risk for severe outcomes associated with COVID-19, but the pathophysiology underlying this increased morbidity and its potential impact on the developing fetus is not well understood. In this study of pregnant women with and without COVID-19, we assessed viral and immune dynamics at the placenta during maternal SARS-CoV-2 infection. Amongst uninfected women, ACE2 was detected by immunohistochemistry in syncytiotrophoblast cells of the normal placenta during early pregnancy but was rarely seen in healthy placentas at full term. Term placentas from women infected with SARS-CoV-2, however, displayed a significant increase in ACE2 levels. Using immortalized cell lines and primary isolated placental cells, we determined the vulnerability of various placental cell types to direct infection by SARS-CoV-2 in vitro. Yet, despite the susceptibility of placental cells to SARS-CoV-2 infection, viral RNA was detected in the placentas of only a subset ([~]13%) of women in this cohort. Through single cell transcriptomic analyses, we found that the maternal-fetal interface of SARS-CoV-2-infected women exhibited markers associated with pregnancy complications, such as preeclampsia, and robust immune responses, including increased activation of placental NK and T cells and increased expression of interferon-related genes. Overall, this study suggests that SARS-CoV-2 is associated with immune activation at the maternal-fetal interface even in the absence of detectable local viral invasion. While this likely represents a protective mechanism shielding the placenta from infection, inflammatory changes in the placenta may also contribute to poor pregnancy outcomes and thus warrant further investigation.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249236

RESUMO

While several clinical and immunological parameters correlate with disease severity and mortality in SARS-CoV-2 infection, work remains in identifying unifying correlates of coronavirus disease 2019 (COVID-19) that can be used to guide clinical practice. Here, we examine saliva and nasopharyngeal (NP) viral load over time and correlate them with patient demographics, and cellular and immune profiling. We found that saliva viral load was significantly higher in those with COVID-19 risk factors; that it correlated with increasing levels of disease severity and showed a superior ability over nasopharyngeal viral load as a predictor of mortality over time (AUC=0.90). A comprehensive analysis of immune factors and cell subsets revealed strong predictors of high and low saliva viral load, which were associated with increased disease severity or better overall outcomes, respectively. Saliva viral load was positively associated with many known COVID-19 inflammatory markers such as IL-6, IL-18, IL-10, and CXCL10, as well as type 1 immune response cytokines. Higher saliva viral loads strongly correlated with the progressive depletion of platelets, lymphocytes, and effector T cell subsets including circulating follicular CD4 T cells (cTfh). Anti-spike (S) and anti-receptor binding domain (RBD) IgG levels were negatively correlated with saliva viral load showing a strong temporal association that could help distinguish severity and mortality in COVID-19. Finally, patients with fatal COVID-19 exhibited higher viral loads, which correlated with the depletion of cTfh cells, and lower production of anti-RBD and anti-S IgG levels. Together these results demonstrated that viral load - as measured by saliva but not nasopharyngeal -- is a dynamic unifying correlate of disease presentation, severity, and mortality over time.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20189159

RESUMO

Coronavirus disease-2019 (COVID-19) has poorer clinical outcomes in males compared to females, and immune responses underlie these sex-related differences in disease trajectory. As immune responses are in part regulated by metabolites, we examined whether the serum metabolome has sex-specificity for immune responses in COVID-19. In males with COVID-19, kynurenic acid (KA) and a high KA to kynurenine (K) ratio was positively correlated with age, inflammatory cytokines, and chemokines and was negatively correlated with T cell responses, revealing that KA production is linked to immune responses in males. Males that clinically deteriorated had a higher KA:K ratio than those that stabilized. In females with COVID-19, this ratio positively correlated with T cell responses and did not correlate with age or clinical severity. KA is known to inhibit glutamate release, and we observed that serum glutamate is lower in patients that deteriorate from COVID-19 compared to those that stabilize, and correlates with immune responses. Analysis of Genotype-Tissue Expression (GTEx) data revealed that expression of kynurenine aminotransferase, which regulates KA production, correlates most strongly with cytokine levels and aryl hydrocarbon receptor activation in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes, in COVID-19 infection.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20165233

RESUMO

Most currently approved strategies for the collection of saliva for COVID-19 diagnostics require specialized tubes containing buffers promoted for the stabilization of SARS-CoV-2 RNA and virus inactivation. Yet many of these are expensive, in limited supply, and not necessarily validated specifically for viral RNA. While saliva is a promising sample type as it can be reliably self-collected for the sensitive detection of SARS-CoV-2, the expense and availability of these collection tubes are prohibitive to mass testing efforts. Therefore, we investigated the stability of SARS-CoV-2 RNA and infectious virus detection from saliva without supplementation. We tested RNA stability over extended periods of time (2-25 days) and at temperatures representing at-home storage and elevated temperatures which might be experienced when cold chain transport may be unavailable. We found SARS-CoV-2 RNA in saliva from infected individuals is stable at 4{degrees}C, room temperature ([~]19{degrees}C), and 30{degrees}C for prolonged periods and found limited evidence for viral replication in stored saliva samples. This work demonstrates that expensive saliva collection options involving RNA stabilization and virus inactivation buffers are not always needed, permitting the use of cheaper collection options. Affordable testing methods are urgently needed to meet current testing demands and for continued surveillance in reopening strategies.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20167791

RESUMO

Current bottlenecks for improving accessibility and scalability of SARS-CoV-2 testing include diagnostic assay costs, complexity, and supply chain shortages. To resolve these issues, we developed SalivaDirect, which received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration on August 15th, 2020. The critical component of our approach is to use saliva instead of respiratory swabs, which enables non-invasive frequent sampling and reduces the need for trained healthcare professionals during collection. Furthermore, we simplified our diagnostic test by (1) not requiring nucleic acid preservatives at sample collection, (2) replacing nucleic acid extraction with a simple proteinase K and heat treatment step, and (3) testing specimens with a dualplex quantitative reverse transcription PCR (RT-qPCR) assay. We validated SalivaDirect with reagents and instruments from multiple vendors to minimize the risk for supply chain issues. Regardless of our tested combination of reagents and instruments from different vendors, we found that SalivaDirect is highly sensitive with a limit of detection of 6-12 SARS-CoV-2 copies/L. When comparing SalivaDirect to paired nasopharyngeal swabs using the authorized ThermoFisher Scientific TaqPath COVID-19 combo kit, we found high agreement in testing outcomes (>94%). In partnership with the National Basketball Association (NBA) and Players Association, we conducted a large-scale (n = 3,779) SalivaDirect usability study and comparison to standard nasal/oral tests for asymptomatic and presymptomatic SARS-CoV-2 detection. From this cohort of healthy NBA players, staff, and contractors, we found that 99.7% of samples were valid using our saliva collection techniques and a 89.5% positive and >99.9% negative test agreement to swabs, demonstrating that saliva is a valid and noninvasive alternative to swabs for large-scale SARS-CoV-2 testing. SalivaDirect is a flexible and inexpensive ($1.21-$4.39/sample in reagent costs) option to help improve SARS-CoV-2 testing capacity. Register to become a designated laboratory to use SalivaDirect under our FDA EUA on our website: publichealth.yale.edu/salivadirect/.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20144543

RESUMO

BackgroundHighly sensitive, non-invasive, and easily accessible diagnostics for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are essential for the control of the Coronavirus Disease 2019 (COVID-19) pandemic. There is a clear need to establish a gold standard diagnostic for SARS-CoV-2 infection in humans using respiratory tract specimens. MethodsSearches will be conducted in the bibliographic databases Medline, Embase, bioRxiv, medRxiv, F1000, ChemRxiv, PeerJ Preprints, Preprints.org, Beilstein Archive, and Research Square. Relevant government documents and grey literature will be sought on the FDAs Emergency Use Authorizations website, the ECDCs website, and the website of the Foundation for Innovative New Diagnostics. Finally, papers categorized as diagnosis papers by the EPPI Centres COVID-19 living systematic map will be added to our screening process; those papers are tagged with the diagnosis topic based on human review, rather than database searches, and thus this set of papers might include ones that have not been captured by our search strategy.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20067835

RESUMO

Rapid and accurate SARS-CoV-2 diagnostic testing is essential for controlling the ongoing COVID-19 pandemic. The current gold standard for COVID-19 diagnosis is real-time RT-PCR detection of SARS-CoV-2 from nasopharyngeal swabs. Low sensitivity, exposure risks to healthcare workers, and global shortages of swabs and personal protective equipment, however, necessitate the validation of new diagnostic approaches. Saliva is a promising candidate for SARS-CoV-2 diagnostics because (1) collection is minimally invasive and can reliably be self-administered and (2) saliva has exhibited comparable sensitivity to nasopharyngeal swabs in detection of other respiratory pathogens, including endemic human coronaviruses, in previous studies. To validate the use of saliva for SARS-CoV-2 detection, we tested nasopharyngeal and saliva samples from confirmed COVID-19 patients and self-collected samples from healthcare workers on COVID-19 wards. When we compared SARS-CoV-2 detection from patient-matched nasopharyngeal and saliva samples, we found that saliva yielded greater detection sensitivity and consistency throughout the course of infection. Furthermore, we report less variability in self-sample collection of saliva. Taken together, our findings demonstrate that saliva is a viable and more sensitive alternative to nasopharyngeal swabs and could enable at-home self-administered sample collection for accurate large-scale SARS-CoV-2 testing.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20048108

RESUMO

The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assays are being used by clinical, research, and public health laboratories. However, it is currently unclear if results from different tests are comparable. Our goal was to evaluate the primer-probe sets used in four common diagnostic assays available on the World Health Organization (WHO) website. To facilitate this effort, we generated RNA transcripts to be used as assay standards and distributed them to other laboratories for internal validation. We then used (1) RNA transcript standards, (2) full-length SARS-CoV-2 RNA, (3) pre-COVID-19 nasopharyngeal swabs, and (4) clinical samples from COVID-19 patients to determine analytical efficiency and sensitivity of the qRT-PCR primer-probe sets. We show that all primer-probe sets can be used to detect SARS-CoV-2 at 500 virus copies per reaction, except for the RdRp-SARSr (Charite) confirmatory primer-probe set which has low sensitivity. Our findings characterize the limitations of currently used primer-probe sets and can assist other laboratories in selecting appropriate assays for the detection of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...