Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3.
Science ; 382(6669): 405-412, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883555

RESUMO

Neural substrates of wakefulness, rapid eye movement sleep (REMS), and non-REMS (NREMS) in the mammalian hypothalamus overlap both anatomically and functionally with cellular networks that support physiological and behavioral homeostasis. Here, we review the roles of sleep neurons of the hypothalamus in the homeostatic control of thermoregulation or goal-oriented behaviors during wakefulness. We address how hypothalamic circuits involved in opposing behaviors such as core body temperature and sleep compute conflicting information and provide a coherent vigilance state. Finally, we highlight some of the key unresolved questions and challenges, and the promise of a more granular view of the cellular and molecular diversity underlying the integrative role of the hypothalamus in physiological and behavioral homeostasis.


Assuntos
Hipotálamo , Neurônios , Sono REM , Sono de Ondas Lentas , Vigília , Animais , Regulação da Temperatura Corporal , Eletroencefalografia , Hipotálamo/citologia , Hipotálamo/fisiologia , Sono REM/fisiologia , Vigília/fisiologia , Humanos , Neurônios/fisiologia , Sono de Ondas Lentas/fisiologia
4.
Nat Neurosci ; 26(6): 1021-1031, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188873

RESUMO

Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.


Assuntos
Doença de Alzheimer , Hormônios Hipotalâmicos , Camundongos , Animais , Doença de Alzheimer/genética , Neurônios/fisiologia , Hormônios Hipofisários , Sono , Camundongos Transgênicos
5.
J Neurosci ; 43(20): 3696-3707, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37045604

RESUMO

During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.


Assuntos
Córtex Auditivo , Lobo Temporal , Humanos , Feminino , Lobo Temporal/fisiologia , Percepção Auditiva/fisiologia , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Eletrocorticografia , Córtex Auditivo/fisiologia , Estimulação Acústica
6.
Biomolecules ; 13(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979445

RESUMO

Noradrenaline (NE) plays an integral role in shaping behavioral outcomes including anxiety/depression, fear, learning and memory, attention and shifting behavior, sleep-wake state, pain, and addiction. However, it is unclear whether dysregulation of NE release is a cause or a consequence of maladaptive orientations of these behaviors, many of which associated with psychiatric disorders. To address this question, we used a unique genetic model in which the brain-specific vesicular monoamine transporter-2 (VMAT2) gene expression was removed in NE-positive neurons disabling NE release in the entire brain. We engineered VMAT2 gene splicing and NE depletion by crossing floxed VMAT2 mice with mice expressing the Cre-recombinase under the dopamine ß-hydroxylase (DBH) gene promotor. In this study, we performed a comprehensive behavioral and transcriptomic characterization of the VMAT2DBHcre KO mice to evaluate the role of central NE in behavioral modulations. We demonstrated that NE depletion induces anxiolytic and antidepressant-like effects, improves contextual fear memory, alters shifting behavior, decreases the locomotor response to amphetamine, and induces deeper sleep during the non-rapid eye movement (NREM) phase. In contrast, NE depletion did not affect spatial learning and memory, working memory, response to cocaine, and the architecture of the sleep-wake cycle. Finally, we used this model to identify genes that could be up- or down-regulated in the absence of NE release. We found an up-regulation of the synaptic vesicle glycoprotein 2c (SV2c) gene expression in several brain regions, including the locus coeruleus (LC), and were able to validate this up-regulation as a marker of vulnerability to chronic social defeat. The NE system is a complex and challenging system involved in many behavioral orientations given it brain wide distribution. In our study, we unraveled specific role of NE neurotransmission in multiple behavior and link it to molecular underpinning, opening future direction to understand NE role in health and disease.


Assuntos
Encéfalo , Transcriptoma , Camundongos , Animais , Encéfalo/metabolismo , Norepinefrina/metabolismo , Depressão/metabolismo , Antidepressivos/farmacologia
8.
Eur J Neurosci ; 57(1): 106-128, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310348

RESUMO

The interplay between the medial prefrontal cortex and hippocampus during non-rapid eye movement (NREM) sleep contributes to the consolidation of contextual memories. To assess the role of the thalamic nucleus reuniens (Nre) in this interaction, we investigated the coupling of neuro-oscillatory activities among prelimbic cortex, Nre, and hippocampus across sleep states and their role in the consolidation of contextual memories using multi-site electrophysiological recordings and optogenetic manipulations. We showed that ripples are time-locked to the Up state of cortical slow waves, the transition from UP to DOWN state in thalamic slow waves, the troughs of cortical spindles, and the peaks of thalamic spindles during spontaneous sleep, rebound sleep and sleep following a fear conditioning task. In addition, spiking activity in Nre increased before hippocampal ripples, and the phase-locking of hippocampal ripples and thalamic spindles during NREM sleep was stronger after acquisition of a fear memory. We showed that optogenetic inhibition of Nre neurons reduced phase-locking of ripples to cortical slow waves in the ventral hippocampus whilst their activation altered the preferred phase of ripples to slow waves in ventral and dorsal hippocampi. However, none of these optogenetic manipulations of Nre during sleep after acquisition of fear conditioning did alter sleep-dependent memory consolidation. Collectively, these results showed that Nre is central in modulating hippocampus and cortical rhythms during NREM sleep.


Assuntos
Córtex Cerebral , Núcleos da Linha Média do Tálamo , Núcleos da Linha Média do Tálamo/fisiologia , Hipocampo/fisiologia , Sono/fisiologia , Cognição , Eletroencefalografia/métodos
9.
Sleep ; 45(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35983916

Assuntos
Sono
10.
Cell Biosci ; 12(1): 121, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918749

RESUMO

BACKGROUND/AIMS: Tick-borne encephalitis (TBE) is a disease affecting the central nervous system. Over the last decade, the incidence of TBE has steadily increased in Europe and Asia despite the availably of effective vaccines. Up to 50% of patients after TBE suffer from post-encephalitic syndrome that may develop into long-lasting morbidity. Altered sleep-wake functions have been reported by patients after TBE. The mechanisms causing these disorders in TBE are largely unknown to date. As a first step toward a better understanding of the pathology of TBEV-inducing sleep dysfunctions, we assessed parameters of sleep structure in an established infant rat model of TBE. METHODS: 13-day old Wistar rats were infected with 1 × 106 FFU Langat virus (LGTV). On day 4, 9, and 21 post infection, Rotarod (balance and motor coordination) and open field tests (general locomotor activity) were performed and brains from representative animals were collected in each subgroup. On day 28 the animals were implanted with a telemetric EEG/EMG system. Sleep recording was continuously performed for 24 consecutive hours starting at day 38 post infection and visually scored for Wake, NREM, and REM in 4 s epochs. RESULTS: As a novelty of this study, infected animals showed a significant larger percentage of time spend awake during the dark phase and less NREM and REM compared to the control animals (p < 0.01 for all comparisons). Furthermore, it was seen, that during the dark phase the wake bout length in infected animals was prolonged (p = 0.043) and the fragmentation index decreased (p = 0.0085) in comparison to the control animals. LGTV-infected animals additionally showed a reduced rotarod performance ability at day 4 (p = 0.0011) and day 9 (p = 0.0055) and day 21 (p = 0.0037). A lower locomotor activity was also seen at day 4 (p = 0.0196) and day 9 (p = 0.0473). CONCLUSION: Our data show that experimental TBE in infant rats affects sleep-wake behavior, leads to decreased spontaneous locomotor activity, and impaired moto-coordinative function.

11.
Neurosci Bull ; 38(9): 1114-1116, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35570232

Assuntos
Sono
12.
Science ; 376(6594): 724-730, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549430

RESUMO

Rapid eye movement (REM) sleep is associated with the consolidation of emotional memories. Yet, the underlying neocortical circuits and synaptic mechanisms remain unclear. We found that REM sleep is associated with a somatodendritic decoupling in pyramidal neurons of the prefrontal cortex. This decoupling reflects a shift of inhibitory balance between parvalbumin neuron-mediated somatic inhibition and vasoactive intestinal peptide-mediated dendritic disinhibition, mostly driven by neurons from the central medial thalamus. REM-specific optogenetic suppression of dendritic activity led to a loss of danger-versus-safety discrimination during associative learning and a lack of synaptic plasticity, whereas optogenetic release of somatic inhibition resulted in enhanced discrimination and synaptic potentiation. Somatodendritic decoupling during REM sleep promotes opposite synaptic plasticity mechanisms that optimize emotional responses to future behavioral stressors.


Assuntos
Dendritos , Plasticidade Neuronal , Córtex Pré-Frontal , Sono REM , Animais , Dendritos/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Sono REM/fisiologia , Tálamo/citologia , Tálamo/fisiologia
13.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452310

RESUMO

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Assuntos
MicroRNAs , Neuropeptídeos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , MicroRNAs/genética , Neuropeptídeos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Sono/genética , Vigília/genética , Peixe-Zebra/metabolismo
14.
Science ; 376(6590): 248-249, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420955

RESUMO

Peptidoglycans from gut microbiota modulate appetite through hypothalamic circuits.


Assuntos
Microbioma Gastrointestinal , Apetite , Encéfalo
16.
Nat Methods ; 19(2): 231-241, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145320

RESUMO

Orexins (also called hypocretins) are hypothalamic neuropeptides that carry out essential functions in the central nervous system; however, little is known about their release and range of action in vivo owing to the limited resolution of current detection technologies. Here we developed a genetically encoded orexin sensor (OxLight1) based on the engineering of circularly permutated green fluorescent protein into the human type-2 orexin receptor. In mice OxLight1 detects optogenetically evoked release of endogenous orexins in vivo with high sensitivity. Photometry recordings of OxLight1 in mice show rapid orexin release associated with spontaneous running behavior, acute stress and sleep-to-wake transitions in different brain areas. Moreover, two-photon imaging of OxLight1 reveals orexin release in layer 2/3 of the mouse somatosensory cortex during emergence from anesthesia. Thus, OxLight1 enables sensitive and direct optical detection of orexin neuropeptides with high spatiotemporal resolution in living animals.


Assuntos
Encéfalo/metabolismo , Imagem Molecular/métodos , Receptores de Orexina/genética , Orexinas/análise , Proteínas Recombinantes/metabolismo , Animais , Comportamento Animal , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Receptores de Orexina/metabolismo , Orexinas/genética , Orexinas/farmacologia , Fótons , Proteínas Recombinantes/genética , Reprodutibilidade dos Testes , Sono/fisiologia
18.
Trends Neurosci ; 44(12): 990-1003, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663506

RESUMO

The electrical activity of diverse brain cells is modulated across states of vigilance, namely wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Enhanced activity of neuronal circuits during NREM sleep impacts on subsequent awake behaviors, yet the significance of their activation, or lack thereof, during REM sleep remains unclear. This review focuses on feeding-promoting cells in the lateral hypothalamus (LH) that express the vesicular GABA and glycine transporter (vgat) as a model to further understand the impact of REM sleep on neural encoding of goal-directed behavior. It emphasizes both spatial and temporal aspects of hypothalamic cell dynamics across awake behaviors and REM sleep, and discusses a role for REM sleep in brain plasticity underlying energy homeostasis and behavioral optimization.


Assuntos
Sono REM , Sono , Comportamento Alimentar , Humanos , Hipotálamo/fisiologia , Sono/fisiologia , Sono REM/fisiologia , Vigília/fisiologia
19.
Front Neurol Neurosci ; 45: 75-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34052816

RESUMO

During the last decade, optogenetic-based circuit mapping has become one of the most common approaches to systems neuroscience, and amassing studies have expanded our understanding of brain structures causally involved in the regulation of sleep-wake cycles. Recent imaging technologies enable the functional mapping of cellular activity, from population down to single-cell resolution, across a broad repertoire of behaviors and physiological processes, including sleep-wake states. This chapter summarizes experimental evidence implicating hypocretins/orexins, melanin-concentrating hormone, and inhibitory neurons from the lateral hypothalamus (LH) in forming an intricate network involved in regulating sleep and metabolism, including feeding behaviors. It further confirms the dual sleep-metabolic functions of LH cells, and sheds light on a possible mechanism underlying brain plasticity during sleep and metabolic disorders.


Assuntos
Comportamento Alimentar/fisiologia , Região Hipotalâmica Lateral/fisiologia , Hormônios Hipotalâmicos/fisiologia , Melaninas/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Orexinas/fisiologia , Hormônios Hipofisários/fisiologia , Sono/fisiologia , Animais , Humanos , Região Hipotalâmica Lateral/metabolismo , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Hormônios Hipofisários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...