Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Conserv Biol ; : e14286, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708866

RESUMO

Driven by the United Nations Decade on Restoration and international funding initiatives, such as the Mangrove Breakthrough, investment in mangrove restoration is expected to increase. Yet, mangrove restoration efforts frequently fail, usually because of ad hoc site-selection processes that do not consider mangrove ecology and the socioeconomic context. Using decision analysis, we developed an approach that accounts for socioeconomic and ecological data to identify sites with the highest likelihood of mangrove restoration success. We applied our approach in the Biosphere Reserve Marismas Nacionales Nayarit, Mexico, an area that recently received funding for implementing mangrove restoration actions. We identified 468 potential restoration sites, assessed their restorability potential based on socioeconomic and ecological metrics, and ranked sites for implementation with spatial optimization. The metrics we used included favorable conditions for propagules to establish and survive under sea-level rise, provision of ecosystem services, and community dynamics. Sites that were selected based on socioeconomic or ecological metrics alone had lower likelihood of mangrove restoration success than sites that were selected based on integrated socioeconomic and ecological metrics. For example, selecting sites based on only socioeconomic metrics captured 16% of the maximum attainable value of functioning mangroves able to provide propagules to potential restoration sites, whereas selecting sites based on ecological and socioeconomic metrics captured 46% of functioning mangroves. Our approach was developed as part of a collaboration between nongovernmental organizations, local government, and academics under rapid delivery time lines given preexisting mangrove restoration implementation commitments. The systematic decision process we used integrated socioeconomic and ecological considerations even under short delivery deadlines, and our approach can be adapted to help mangrove restoration site-selection decisions elsewhere.


Integración de datos socioeconómicos y ecológicos en las prácticas de restauración Resumen Se espera que la inversión en la restauración de los manglares incremente debido a la Década de Restauración de las Naciones Unidad y las iniciativas internacionales de financiamiento, como The Mangrove Breakthrough. Sin embargo, los esfuerzos de restauración de manglares fallan con frecuencia, generalmente por los procesos de selección de sitios ad­hoc que no consideran la ecología del manglar y el contexto socioeconómico. Usamos el análisis de decisiones para desarrollar una estrategia que considera los datos socioeconómicos y ecológicos para identificar los sitios con mayor probabilidad de éxito de restauración. Aplicamos nuestra estrategia en la Reserva de la Biósfera Marismas Nacionales Nayarit, México, un área que recibió financiamiento reciente para la restauración del manglar. Identificamos 468 sitios potencialmente restaurables, evaluamos su potencial de restauración con base en medidas ecológicas y socioeconómicas y clasificamos los sitios para la implementación con la optimización espacial. Las medidas que usamos incluían las condiciones favorables para que los propágulos se establezcan y sobrevivan con el incremento en el nivel del mar, el suministro de servicios ambientales y las dinámicas de la comunidad. Los sitios seleccionados sólo con base en las medidas ecológicas o socioeconómicas tuvieron una menor probabilidad de éxito de restauración que los sitios que se seleccionaron con base en medidas socioeconómicas y ecológicas integradas. Por ejemplo, la selección de sitios con base sólo en las medidas socioeconómicas capturó el 16% del máximo valor alcanzable de manglares funcionales capaces de proporcionar propágulos a los sitios potenciales de restauración, mientras que la selección basada en medidas ecológicas y socioeconómicas capturó el 46% de los manglares funcionales. Desarrollamos nuestra estrategia como parte de una colaboración entre organizaciones no gubernamentales, el gobierno local y académicos sujetos a una fecha pronta de entrega debido a los compromisos preexistentes para la restauración de manglares. El proceso de decisión sistemática que usamos integró las consideraciones ecológicas y socioeconómicas incluso con plazos cortos de entrega. Nuestra estrategia puede adaptarse para apoyar en la selección de sitios de restauración de manglares en otros sitios.

2.
Bioscience ; 74(4): 253-268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38720908

RESUMO

Managing coastal wetlands is one of the most promising activities to reduce atmospheric greenhouse gases, and it also contributes to meeting the United Nations Sustainable Development Goals. One of the options is through blue carbon projects, in which mangroves, saltmarshes, and seagrass are managed to increase carbon sequestration and reduce greenhouse gas emissions. However, other tidal wetlands align with the characteristics of blue carbon. These wetlands are called tidal freshwater wetlands in the United States, supratidal wetlands in Australia, transitional forests in Southeast Asia, and estuarine forests in South Africa. They have similar or larger potential for atmospheric carbon sequestration and emission reductions than the currently considered blue carbon ecosystems and have been highly exploited. In the present article, we suggest that all wetlands directly or indirectly influenced by tides should be considered blue carbon. Their protection and restoration through carbon offsets could reduce emissions while providing multiple cobenefits, including biodiversity.

3.
Sci Data ; 10(1): 797, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952023

RESUMO

Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.

4.
Sci Total Environ ; 904: 166357, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595913

RESUMO

Mangrove forests support unique biodiversity and provide a suite of ecosystem services (ES) that benefit people. Decades of continual mangrove loss and degradation have necessitated global efforts to protect and restore this important ecosystem. Generating and evaluating asset maps of biodiversity and ES is an important precursor to identifying locations that can deliver conservation outcomes across varying scales, such as maximising the co-occurrence of specific ES. We bring together global datasets on mangrove-affiliated biodiversity, carbon stocks, fish and invertebrate production, and coastal protection to provide insight into potential trade-offs, synergies and opportunities from mangrove conservation. We map opportunities where high ES provision co-occurs with these areas that could be leveraged in conservation planning, and identify potential high-value opportunities for single ES that might otherwise be missed with a biodiversity focus. Hotspots of single ES, co-occurrence of multiple ES, and opportunities to simultaneously leverage biodiversity and ES occurred throughout the world. For example, efforts that focus on conserving or restoring mangroves to store carbon can be targed to deliver multiple ES benefits. Some nations, such as Vietnam, Oman, Ecuador and China, showed consistent (although not necessarily strong) correlations between ES pairs. A lack of clear or consistent spatial trends elsewhere suggests that some nations will likely benefit more from complementarity-based approaches that focus on multiple sites with high provision of different services. Individual sites within these nations, however, such as Laguna de Terminos in Mexico still provide valuable opportunities to leverage co-benefits. Ensuring that an ES focused approach is complemented by strategic spatial planning is a priority, and our analyses provide a precursor towards decisions about where and how to invest.


Assuntos
Carbono , Ecossistema , Humanos , Animais , Conservação dos Recursos Naturais , Biodiversidade , Invertebrados
5.
Sci Total Environ ; 874: 162518, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870497

RESUMO

Vegetated coastal ecosystems, in particular mangroves, tidal marshes and seagrasses are highly efficient at sequestering and storing carbon, making them valuable assets for climate change mitigation and adaptation. The state of Queensland, in northeastern Australia, contains almost half of the total area of these blue carbon ecosystems in the country, yet there are few detailed regional or state-wide assessments of their total sedimentary organic carbon (SOC) stocks. We compiled existing SOC data and used boosted regression tree models to evaluate the influence of environmental variables in explaining the variability in SOC stocks, and to produce spatially explicit blue carbon estimates. The final models explained 75 % (for mangroves and tidal marshes) and 65 % (for seagrasses) of the variability in SOC stocks. Total SOC stocks in the state of Queensland were estimated at 569 ± 98 Tg C (173 ± 32 Tg C, 232 ± 50 Tg C, and 164 ± 16 Tg C from mangroves, tidal marshes and seagrasses, respectively). Regional predictions for each of Queensland's eleven Natural Resource Management regions revealed that 60 % of the state's SOC stocks occurred within three regions (Cape York, Torres Strait and Southern Gulf Natural Resource Management regions) due to a combination of high values of SOC stocks and large areas of coastal wetlands. Protected areas in Queensland play an important role in conserving SOC assets in Queensland's coastal wetlands. For example, ~19 Tg C within terrestrial protected areas, ~27 Tg C within marine protected areas and ~ 40 Tg C within areas of matters of State Environmental Significance. Using multi-decadal (1987-2020) mapped distributions of mangroves in Queensland; we found that mangrove area increased by approximately 30,000 ha from 1987 to 2020, which led to temporal fluctuations in mangrove plant and SOC stocks. We estimated that plant stocks decreased from ~45 Tg C in 1987 to ~34.2 Tg C in 2020, while SOC stocks remained relatively constant from ~107.9 Tg C in 1987 to 108.0 Tg C in 2020. Considering the level of current protection, emissions from mangrove deforestation are potentially very low; therefore, representing minor opportunities for mangrove blue carbon projects in the region. Our study provides much needed information on current trends in carbon stocks and their conservation in Queensland's coastal wetlands, while also contributing to guide future management actions, including blue carbon restoration projects.

6.
Nat Commun ; 13(1): 6373, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289201

RESUMO

Mangrove forests store high amounts of carbon, protect communities from storms, and support fisheries. Mangroves exist in complex social-ecological systems, hence identifying socioeconomic conditions associated with decreasing losses and increasing gains remains challenging albeit important. The impact of national governance and conservation policies on mangrove conservation at the landscape-scale has not been assessed to date, nor have the interactions with local economic pressures and biophysical drivers. Here, we assess the relationship between socioeconomic and biophysical variables and mangrove change across coastal geomorphic units worldwide from 1996 to 2016. Globally, we find that drivers of loss can also be drivers of gain, and that drivers have changed over 20 years. The association with economic growth appears to have reversed, shifting from negatively impacting mangroves in the first decade to enabling mangrove expansion in the second decade. Importantly, we find that community forestry is promoting mangrove expansion, whereas conversion to agriculture and aquaculture, often occurring in protected areas, results in high loss. Sustainable development, community forestry, and co-management of protected areas are promising strategies to reverse mangrove losses, increasing the capacity of mangroves to support human-livelihoods and combat climate change.


Assuntos
Ecossistema , Áreas Alagadas , Humanos , Agricultura Florestal , Mudança Climática , Carbono , Conservação dos Recursos Naturais
7.
Ecol Appl ; 32(5): e2620, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389535

RESUMO

Coastal wetland restoration is an important activity to achieve greenhouse gas (GHG) reduction targets, improve water quality, and reach the Sustainable Development Goals. However, many uncertainties remain in connection with achieving, measuring, and reporting success from coastal wetland restoration. We measured levels of carbon (C) abatement and nitrogen (N) removal potential of restored coastal wetlands in subtropical Queensland, Australia. The site was originally a supratidal forest composed of Melaleuca spp. that was cleared and drained in the 1990s for sugarcane production. In 2010, tidal inundation was reinstated, and a mosaic of coastal vegetation (saltmarshes, mangroves, and supratidal forests) emerged. We measured soil GHG fluxes (CH4 , N2 O, CO2 ) and sequestration of organic C in the trees and soil to estimate the net C abatement associated with the reference, converted, and restored sites. To assess the influence of restoration on water quality improvement, we measured denitrification and soil N accumulation. We calculated C abatement of 18.5 Mg CO2-eq ha-1 year-1 when sugarcane land transitioned to supratidal forests, 11.0 Mg CO2-eq ha-1 year-1 when the land transitioned to mangroves, and 6.2 Mg CO2-eq ha-1 year-1 when the land transitioned to saltmarshes. The C abatement was due to tree growth, soil accumulation, and reduced N2 O emissions due to the cessation of fertilization. Carbon abatement was still positive, even accounting for CH4 emissions, which increased in the wetlands due to flooding and N2 O production due to enhanced levels of denitrification. Coastal wetland restoration in this subtropical setting effectively reduces CO2 emissions while providing additional cobenefits, notably water quality improvement.


Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Carbono , Dióxido de Carbono/análise , Mudança Climática , Metano/análise , Óxido Nitroso/análise , Solo , Qualidade da Água
8.
Foods ; 11(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35267303

RESUMO

Agavins are prebiotics and functional fiber that modulated the gut microbiota and metabolic status in obese mice. Here, we designed a placebo-controlled, double-blind, exploratory study to assess fluctuations in gastrointestinal (GI) tolerability-related symptoms to increasing doses of agavins in 38 lean and obese Mexican adults for five weeks and their impact on subjective appetite, satiety, metabolic markers, and body composition. All GI symptoms showed higher scores than placebo at almost every dose for both lean and obese groups. Flatulence caused an intense discomfort in the lean-agavins group at 7 g/day, while obese-agavins reported a mild-to-moderate effect for all five symptoms: no significant differences among 7, 10, and 12 g/day for flatulence, bloating, and diarrhea. Ratings for any GI symptom differed between 10 and 12 g/day in neither group. The inter-group comparison demonstrated a steady trend in GI symptoms scores in obese participants not seen for lean volunteers that could improve their adherence to larger trials. Only body weight after 10 g/day reduced from baseline conditions in obese-agavins, with changes in triglycerides and very-low-density lipoproteins compared to placebo at 5 g/day, and in total cholesterol for 10 g/day. Altogether, these results would help design future trials to evaluate agavins impact on obese adults.

9.
Curr Biol ; 32(7): 1641-1649.e3, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35196506

RESUMO

There is an urgent need to halt and reverse loss of mangroves and seagrass to protect and increase the ecosystem services they provide to coastal communities, such as enhancing coastal resilience and contributing to climate stability.1,2 Ambitious targets for their recovery can inspire public and private investment in conservation,3 but the expected outcomes of different protection and restoration strategies are unclear. We estimated potential recovery of mangroves and seagrass through gains in ecosystem extent to the year 2070 under a range of protection and restoration strategies implemented until the year 2050. Under a protection-only scenario, the current trajectories of net mangrove loss slowed, and a minor net gain in global seagrass extent (∼1%) was estimated. Protection alone is therefore unlikely to drive sufficient recovery. However, if action is taken to both protect and restore, net gains of up to 5% and 35% of mangroves and seagrasses, respectively, could be achieved by 2050. Further, protection and restoration can be complementary, as protection prevents losses that would otherwise occur post-2050, highlighting the importance of implementing protection measures. Our findings provide the scientific evidence required for setting strategic and ambitious targets to inspire significant global investment and effort in mangrove and seagrass conservation.


Assuntos
Ecossistema , Áreas Alagadas , Clima , Conservação dos Recursos Naturais
10.
J Environ Manage ; 296: 113183, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34229139

RESUMO

Wetlands are highly productive ecosystem with great potential to store carbon (C) and retain nitrogen (N) and phosphorus (P) in their soil. Changes in vegetation type and land use can affect organic matter inputs and soil properties. This work aimed to examine how these changes affected elemental stoichiometry and C-, N-, and P- associated enzyme activities and wetland soil organic C stock. We quantified organic C concentrations, and stoichiometric ratios of C, N, and P in total and microbial biomass pools, along with the activities and ratios of C-, N-, and P-associated enzymes for soils of natural coastal wetlands with different vegetation types, namely Melaleuca wetland (Melaleuca spp), mangrove forests (Bruguiera spp), and saline marsh (Eleocharis spp). We also compared these natural wetlands to an adjacent sugarcane plantation to understand the effects of vegetation types. Hypothesis-oriented path analysis was used to explore links between these variables and soil organic C stocks. Tidal forested soils (0-30 cm) had the highest organic C, N, and P contents and potential activities of C-, N-, P- acquiring enzymes, compared with other vegetation types. Mangroves soils had the highest total soil C:N and microbial biomass C:P ratios. Microbial biomass C:P ratios were significantly and positively related to total C:P, while microbial biomass N:P ratios were positively associated with total soil C:P and N:P ratios. Path analysis suggested that soil organic C stock was largely explained by total C:P ratio, microbial biomass N:P ratios, total P content, and the ratio of C- and P-associated enzymes. Different types of wetlands have different soil properties and enzymatic activities, implying their different capacity to store and process C and N. The resource quality and stoichiometry direct influence the organic C stock.


Assuntos
Carbono , Áreas Alagadas , Carbono/análise , China , Ecossistema , Nitrogênio/análise , Queensland , Rios , Solo
11.
Glob Chang Biol ; 27(14): 3257-3271, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864332

RESUMO

Australia's Great Barrier Reef (GBR) catchments include some of the world's most intact coastal wetlands comprising diverse mangrove, seagrass and tidal marsh ecosystems. Although these ecosystems are highly efficient at storing carbon in marine sediments, their soil organic carbon (SOC) stocks and the potential changes resulting from climate impacts, including sea level rise are not well understood. For the first time, we estimated SOC stocks and their drivers within the range of coastal wetlands of GBR catchments using boosted regression trees (i.e. a machine learning approach and ensemble method for modelling the relationship between response and explanatory variables) and identified the potential changes in future stocks due to sea level rise. We found levels of SOC stocks of mangrove and seagrass meadows have different drivers, with climatic variables such as temperature, rainfall and solar radiation, showing significant contributions in accounting for variation in SOC stocks in mangroves. In contrast, soil type accounted for most of the variability in seagrass meadows. Total SOC stock in the GBR catchments, including mangroves, seagrass meadows and tidal marshes, is approximately 137 Tg C, which represents 9%-13% of Australia's total SOC stock while encompassing only 4%-6% of the total extent of Australian coastal wetlands. In a global context, this could represent 0.5%-1.4% of global SOC stock. Our study suggests that landward migration due to projected sea level rise has the potential to enhance carbon accumulation with total carbon gains between 0.16 and 0.46 Tg C and provides an opportunity for future restoration to enhance blue carbon.


Assuntos
Carbono , Áreas Alagadas , Austrália , Carbono/análise , Sequestro de Carbono , Ecossistema , Solo
12.
Sci Total Environ ; 782: 146819, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838377

RESUMO

Wetland ecosystems are critical to the regulation of the global carbon cycle, and there is a high demand for data to improve carbon sequestration and emission models and predictions. Decomposition of plant litter is an important component of ecosystem carbon cycling, yet a lack of knowledge on decay rates in wetlands is an impediment to predicting carbon preservation. Here, we aim to fill this knowledge gap by quantifying the decomposition of standardised green and rooibos tea litter over one year within freshwater and coastal wetland soils across four climates in Australia. We also captured changes in the prokaryotic members of the tea-associated microbiome during this process. Ecosystem type drove differences in tea decay rates and prokaryotic microbiome community composition. Decomposition rates were up to 2-fold higher in mangrove and seagrass soils compared to freshwater wetlands and tidal marshes, in part due to greater leaching-related mass loss. For tidal marshes and freshwater wetlands, the warmer climates had 7-16% less mass remaining compared to temperate climates after a year of decomposition. The prokaryotic microbiome community composition was significantly different between substrate types and sampling times within and across ecosystem types. Microbial indicator analyses suggested putative metabolic pathways common across ecosystems were used to breakdown the tea litter, including increased presence of putative methylotrophs and sulphur oxidisers linked to the introduction of oxygen by root in-growth over the incubation period. Structural equation modelling analyses further highlighted the importance of incubation time on tea decomposition and prokaryotic microbiome community succession, particularly for rooibos tea that experienced a greater proportion of mass loss between three and twelve months compared to green tea. These results provide insights into ecosystem-level attributes that affect both the abiotic and biotic controls of belowground wetland carbon turnover at a continental scale, while also highlighting new decay dynamics for tea litter decomposing under longer incubations.


Assuntos
Microbiota , Áreas Alagadas , Austrália , Carbono , Ecossistema , Água Doce , Solo , Chá
13.
Glob Chang Biol ; 27(12): 2856-2866, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33644947

RESUMO

Mangroves have among the highest carbon densities of any tropical forest. These 'blue carbon' ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse gas emissions and supports climate change mitigation. Incorporating mangroves into Nationally Determined Contributions to the Paris Agreement and their valuation on carbon markets requires predicting how the management of different land-uses can prevent future greenhouse gas emissions and increase CO2 sequestration. We integrated comprehensive global datasets for carbon stocks, mangrove distribution, deforestation rates, and land-use change drivers into a predictive model of mangrove carbon emissions. We project emissions and foregone soil carbon sequestration potential under 'business as usual' rates of mangrove loss. Emissions from mangrove loss could reach 2391 Tg CO2 eq by the end of the century, or 3392 Tg CO2 eq when considering foregone soil carbon sequestration. The highest emissions were predicted in southeast and south Asia (West Coral Triangle, Sunda Shelf, and the Bay of Bengal) due to conversion to aquaculture or agriculture, followed by the Caribbean (Tropical Northwest Atlantic) due to clearing and erosion, and the Andaman coast (West Myanmar) and north Brazil due to erosion. Together, these six regions accounted for 90% of the total potential CO2 eq future emissions. Mangrove loss has been slowing, and global emissions could be more than halved if reduced loss rates remain in the future. Notably, the location of global emission hotspots was consistent with every dataset used to calculate deforestation rates or with alternative assumptions about carbon storage and emissions. Our results indicate the regions in need of policy actions to address emissions arising from mangrove loss and the drivers that could be managed to prevent them.


Assuntos
Carbono , Áreas Alagadas , Ásia , Brasil , Sequestro de Carbono , Região do Caribe , Ecossistema , Paris
14.
Sci Total Environ ; 759: 143455, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33243518

RESUMO

Tropical coastal wetlands provide a range of ecosystem services that are closely associated with microbially-driven biogeochemical processes. Knowledge of the main players and their drivers in those processes can have huge implications on the carbon and nutrient fluxes in wetland soils, and thus on the ecosystems services we derive from them. Here, we collected surface (0-5 cm) and subsurface (20-25 cm) soil samples along a transect from forested freshwater wetlands, to saltmarsh, and mangroves. For each sample, we measured a range of abiotic properties and characterised the diversity of bacterial communities using 16S rRNA gene amplicon sequencing. The alpha diversity of bacterial communities in mangroves exceeded that of freshwater wetlands, which were dominated by members of the Acidobacteria, Alphaproteobacteria and Verrucomicrobia, and associated with high soil pore-water concentrations of soluble reactive phosphorous, and nitrogen as nitrate and nitrite (N-NOX-). Bacterial communities in the saltmarsh were strongly stratified by depth and included members of the Actinobacteria, Chloroflexi, and Deltaproteobacteria. Finally, the mangroves were dominated by representatives of Deltaproteobacteria, mainly Desulfobacteraceae and Synthrophobacteraceae, and were associated with high salinity and soil pore-water concentrations of ammonium (N-NH4+). These communities suggest methane consumption in freshwater wetlands, and sulfate reduction in deep soils of marshes and in mangroves. Our work contributes to the important goal of describing reference conditions for specific wetlands in terms of both bacterial communities and their drivers. This information may be used to monitor change and assess wetland health and function.


Assuntos
Ecossistema , Áreas Alagadas , Bactérias/genética , Água Doce , RNA Ribossômico 16S , Solo , Microbiologia do Solo
15.
Foods ; 9(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287102

RESUMO

Highly branched neo-fructans (agavins) are natural prebiotics found in Agave plants, with a large capacity to mitigate the development of obesity and metabolic syndrome. Here, we investigated the impact of agavins intake on gut microbiota modulation and their metabolites as well as their effect on metabolic endotoxemia and low-grade inflammation in mice fed high-fat diet. Mice were fed with a standard diet (ST) and high-fat diet (HF) alone or plus an agavins supplement (HF+A) for ten weeks. Gut microbiota composition, fecal metabolite profiles, lipopolysaccharides (LPS), pro-inflammatory cytokines, and systemic effects were analyzed. Agavins intake induced substantial changes in gut microbiota composition, enriching Bacteroides, Parabacteroides, Prevotella, Allobaculum, and Akkermansia genus (LDA > 3.0). l-leucine, l-valine, uracil, thymine, and some fatty acids were identified as possible biomarkers for this prebiotic supplement. As novel findings, agavins supplementation significantly decreased LPS and pro-inflammatory (IL-1α, IL-1ß, and TNF-α; p < 0.05) cytokines levels in portal vein. In addition, lipid droplets content in the liver and adipocytes size also decreased with agavins consumption. In conclusion, agavins supplementation mitigate metabolic endotoxemia and low-grade inflammation in association with gut microbiota regulation and their metabolic products, thus inducing beneficial responses on metabolic disorders in high-fat diet-fed mice.

16.
Cult. cuid ; 23(55): 196-208, sept.-dic. 2019. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-190670

RESUMO

Conocer el efecto del Ramadán en servicios de urgencias resulta de importancia para los profesionales sanitarios. No existen guías de práctica clínica para esta atención y esta revisión sistemática puede ayudar a los profesionales sanitarios en el abordaje de este suceso. El objetivo es conocer las características de la atención prestada en los servicios de urgencias y emergencias a miembros de la religión musulmana durante el ayuno del Ramadán. Se realizó una búsqueda bibliográfica sistematizada en las bases de datos Pubmed, Scopus, WoS, Cinhal y en revistas especializadas. CRITERIOS DE INCLUSIÓN: idioma inglés y español, artículos publicados desde 2007 hasta 2018 y en el ámbito de urgencias y emergencias. Identificados 58 artículos, de los cuales fueron seleccionaron 19. La calidad metodológica se valoró con PRISMA, STROBE y CONSORT. Los hallazgos encontrados fueron las principales enfermedades / tipos de urgencias atendidas y el volumen de personas atendidas en los servicios de urgencias y emergencias durante el Ramadán. El cuidado hacia pacientes musulmanes implica conocer sus necesidades en su contexto cultural y de valores, siendo importante para la enfermería conocerlos para ofrecer cuidados culturalmente apropiados. Es necesario reforzar la formación en enfermería transcultural para garantizar mejores cuidados y calidad asistencial


Knowing the effect of Ramadan in emergency services is important for health professionals. There are no clinical practice guidelines for this care and this systematic review can help health professionals in the approach to this event. The objective is to know the characteristics of the attention given in the emergency services and emergencies to members of the Muslim religion during the fasting of Ramadan. A systematic bibliographic search was carried out in Pubmed, Scopus, WoS, Cinhal and specialized journals databases. Inclusion criteria: English and Spanish language, articles published from 2007 to 2018 and in the field of emergencies and emergencies. Identified 58 articles, of which 19 were selected. The methodological quality was assessed with PRISMA, STROBE and CONSORT. The findings were the main diseases / types of emergencies attended and the volume of people attended in the emergency services during Ramadan. Caring for Muslim patients implies knowing their needs in their cultural context and values, being important for nursing to know them to offer culturally appropriate care. It is necessary to strengthen the training


Conhecer o efeito do Ramadã nos serviços de emergência é importante para os profissionais de saúde. Não há diretrizes de prática clínica para este cuidado e esta revisão sistemática pode auxiliar os profissionais de saúde na abordagem deste evento. O objetivo é conhecer as características da atenção dada nos serviços de emergência e emergências aos membros da religião muçulmana durante o jejum do Ramadã. Uma busca bibliográfica sistemática foi realizada nas bases de dados Pubmed, Scopus, WoS, Cinhal e periódicos especializados. Critérios de inclusão: inglês e espanhol, artigos publicados de 2007 a 2018 e no campo de emergências e emergências. Foram identificados 58 artigos, dos quais 19 foram selecionados e a qualidade metodológica foi avaliada com PRISMA, STROBE e CONSORT. Os resultados foram as principais doenças / tipos de emergências atendidas e o volume de pessoas atendidas nos serviços de emergência durante o Ramadã. Cuidar de pacientes muçulmanos implica conhecer suas necessidades em seu contexto e valores culturais, sendo importante que a enfermagem os conheça para oferecer um cuidado culturalmente adequado. É necessário fortalecer o treinamento


Assuntos
Humanos , Enfermagem em Emergência/métodos , Características Culturais , Jejum/efeitos adversos , Religião
17.
PLoS One ; 13(7): e0200983, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30011338

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0197159.].

18.
PLoS One ; 13(6): e0197159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874276

RESUMO

The estuarine crocodile (Crocodylus porosus) is one of the largest and most widespread crocodilians in the world. Although considered an apex species, the role of the estuarine crocodile in aquatic foodwebs is poorly understood; we know what crocodiles ingest, but not what nourishes them. In this study, we used a combination of stable isotope measurements (δ13C, δ15N, and δ34S) and direct feeding observations to identify the source of nutrition of estuarine crocodiles in Kakadu National Park, Northern Australia. Our results show that most crocodiles sampled (size 850 - 4200mm, with 76% of them being > 2.5 m) consume a large variety of prey, however a large proportion of their nutrition is derived from terrestrial prey. Introduced species such as water buffaloes (Bubalus bubalis) and pigs (Sus scrofa) could contribute between 53 and 84% to the nutrition of the sampled crocodiles. The isotopic composition of large crocodiles (total length > 3 m) suggested possible increase in marine prey consumption with size (R2 = 0.30; p = 0.005). Additionally, we found crocodiles sampled in the dry season had on average higher terrestrial contributions compared to crocodiles sampled during the wet season (84.1 ± 2.4% versus 55.4 ± 7.0%). Overall, we found that terrestrial prey are important source of nutrition for many crocodiles in this region where introduced herbivorous mammals are abundant.


Assuntos
Jacarés e Crocodilos/fisiologia , Estuários , Modelos Biológicos , Comportamento Predatório/fisiologia , Clima Tropical , Animais , Austrália , Búfalos , Sus scrofa
19.
Oecologia ; 187(3): 597-608, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29651662

RESUMO

Mixing models have become requisite tools for analyzing biotracer data, most commonly stable isotope ratios, to infer dietary contributions of multiple sources to a consumer. However, Bayesian mixing models will always return a result that defaults to their priors if the data poorly resolve the source contributions, and thus, their interpretation requires caution. We describe an application of information theory to quantify how much has been learned about a consumer's diet from new biotracer data. We apply the approach to two example data sets. We find that variation in the isotope ratios of sources limits the precision of estimates for the consumer's diet, even with a large number of consumer samples. Thus, the approach which we describe is a type of power analysis that uses a priori simulations to find an optimal sample size. Biotracer data are fundamentally limited in their ability to discriminate consumer diets. We suggest that other types of data, such as gut content analysis, must be used as prior information in model fitting, to improve model learning about the consumer's diet. Information theory may also be used to identify optimal sampling protocols in situations where sampling of consumers is limited due to expense or ethical concerns.


Assuntos
Dieta , Isótopos , Teorema de Bayes , Isótopos de Carbono , Isótopos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...