RESUMO
Gßγ marks the inner side of the plasma membrane where chemotactic GPCRs activate Rac to lead the assembly of actin filaments that push the cell to move forward. Upon dissociation from heterotrimeric Gi, Gßγ recruits and activates P-Rex1, a Rac guanine nucleotide exchange factor (RacGEF). This cytosolic chemotactic effector is kept inactive by intramolecular interactions. The mechanism by which Gßγ stimulates P-Rex1 has been debated. We hypothesized that Gßγ activates P-Rex1 by a two-step mechanism based on independent interaction interfaces to recruit and unroll this RacGEF. Using pulldown assays, we found that Gßγ binds P-Rex1-DH/PH as well as PDZ-PDZ domains. These domains and the DEP-DEP tandem interact among them and dissociate upon binding with Gßγ, arguing for a stimulatory allosteric effect. In addition, P-Rex1 catalytic activity is inhibited by its C-terminal domain. To discern P-Rex1 recruitment from activation, we studied Q-Rhox, a synthetic RhoGEF having the PDZ-RhoGEF catalytic DH/PH module, insensitive to Gßγ, swapped into P-Rex1. Gßγ recruited Q-Rhox to the plasma membrane, indicating that Gßγ/PDZ-PDZ interaction interface plays a role on P-Rex1 recruitment. In conclusion, we reconcile previous findings and propose a mechanistic model of P-Rex1 activation; accordingly, Gßγ recruits P-Rex1 via the Gßγ/PDZ-PDZ interface followed by a second contact involving the Gßγ/DH/PH interface to unleash P-Rex1 RacGEF activity at the plasma membrane.
Assuntos
Membrana Celular/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Células HEK293 , Humanos , Domínios PDZ , Ligação Proteica , Transdução de SinaisRESUMO
Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13 Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42.
Assuntos
Movimento Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Domínios de Homologia à Plecstrina/genética , Pseudópodes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , FosforilaçãoAssuntos
Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas , Fuso Acromático/metabolismo , Células HEK293 , Células HeLa , Humanos , Fuso Acromático/ultraestruturaRESUMO
Developmental angiogenesis and the maintenance of the blood-brain barrier involve endothelial cell adhesion, which is linked to cytoskeletal dynamics. GPR124 (also known as TEM5/ADGRA2) is an adhesion G protein-coupled receptor family member that plays a pivotal role in brain angiogenesis and in ensuring a tight blood-brain barrier. However, the signaling properties of GPR124 remain poorly defined. Here, we show that ectopic expression of GPR124 promotes cell adhesion, additive to extracellular matrix-dependent effect, coupled with filopodia and lamellipodia formation and an enrichment of a pool of the G protein-coupled receptor at actin-rich cellular protrusions containing VASP, a filopodial marker. Accordingly, GPR124-expressing cells also displayed increased activation of both Rac and Cdc42 GTPases. Mechanistically, we uncover novel direct interactions between endogenous GPR124 and the Rho guanine nucleotide exchange factors Elmo/Dock and intersectin (ITSN). Small fragments of either Elmo or ITSN1 that bind GPR124 blocked GPR124-induced cell adhesion. In addition, Gßγ interacts with the C-terminal tail of GPR124 and promotes the formation of a GPR124-Elmo complex. Furthermore, GPR124 also promotes the activation of the Elmo-Dock complex, as measured by Elmo phosphorylation on a conserved C-terminal tyrosine residue. Interestingly, Elmo and ITSN1 also interact with each other independently of their GPR124-recognition regions. Moreover, endogenous phospho-Elmo and ITSN1 co-localize with GPR124 at lamellipodia of adhering endothelial cells, where GPR124 expression contributes to polarity acquisition during wound healing. Collectively, our results indicate that GPR124 promotes cell adhesion via Elmo-Dock and ITSN. This constitutes a previously unrecognized complex formed of atypical and conventional Rho guanine nucleotide exchange factors for Rac and Cdc42 that is putatively involved in GPR124-dependent angiogenic responses.