Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 57(10): 2108-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063274

RESUMO

AIMS/HYPOTHESIS: Orexin A (OXA) modulates food intake, energy expenditure, and lipid and glucose metabolism. OXA regulates the secretion of insulin and glucagon, while glucose regulates OXA release. Here, we evaluate the role of glucagon in regulating OXA release both in vivo and in vitro. METHODS: In a double-blind crossover study, healthy volunteers and type 1 diabetic patients received either intramuscular glucagon or placebo. Patients newly diagnosed with type 2 diabetes underwent hyperinsulinaemic-euglycaemic clamp experiments, and insulin-hypoglycaemia tests were performed on healthy volunteers. The primary endpoint was a change in OXA levels after intramuscular glucagon or placebo administration in healthy participants and patients with type 1 diabetes. Secondary endpoints included changes in OXA in healthy participants during insulin tolerance tests and in patients with type 2 diabetes under hyperinsulinaemic-euglycaemic conditions. Participants and staff conducting examinations and taking measurements were blinded to group assignment. OXA secretion in response to glucagon treatment was assessed in healthy and obese mice, the streptozotocin-induced mouse model of type 1 diabetes, and isolated rat pancreatic islets. RESULTS: Plasma OXA levels declined in lean volunteers and in type 1 diabetic patients injected with glucagon. OXA levels increased during hyperinsulinaemic hypoglycaemia testing in healthy volunteers and during hyperinsulinaemic euglycaemic conditions in type 2 diabetic patients. Plasma OXA concentrations in healthy lean and obese mice and in a mouse model of type 1 diabetes were lower after glucagon treatment, compared with vehicle control. Glucagon decreased OXA secretion from isolated rat pancreatic islets at both low and high glucose levels. OXA secretion declined in pancreatic islets exposed to diazoxide at high and low glucose levels, and after exposure to an anti-insulin antibody. Glucagon further reduced OXA secretion in islets pretreated with diazoxide or an anti-insulin antibody. CONCLUSIONS/INTERPRETATION: Glucagon inhibits OXA secretion in humans and animals, irrespective of changes in glucose or insulin levels. Through modifying OXA secretion, glucagon may influence energy expenditure, body weight, food intake and glucose metabolism.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Glucagon/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adulto , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Método Duplo-Cego , Feminino , Glucose/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Orexinas , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...