Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(21): 5786-5798, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37881701

RESUMO

The sale of antibiotics and antifungals has skyrocketed since 2020. The increasing threat of pathogens like ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), which are effective in evading existing antibiotics, and yeasts like Candida auris or Cryptococcus neoformans is pressing to develop efficient antimicrobial alternatives. Nanoparticles, especially silver nanoparticles (AgNPs), are believed to be promising candidates to supplement or even replace antibiotics in some applications. Here, we propose a way to increase the antimicrobial efficiency of silver nanoparticles by using tea extracts (black, green, or red) for their synthesis. This allows for using lower concentrations of nanoparticles and obtaining the antimicrobial effect in a short time. We found that AgNPs synthesized using green tea extract (G-TeaNPs) are the most effective, causing approximately 80% bacterial cell death in Gram-negative bacteria within only 3 hours at a concentration of 0.1 mg mL-1, which is better than antibiotics. Ampicillin at the same concentration (0.1 mg mL-1) and within the same duration (3 h) causes only up to 40% decrease in the number of S. aureus and E. cloacae cells (non-resistant strains). The tested silver nanoparticles also have antifungal properties and are effective against C. auris and C. neoformans, which are difficult to eradicate using other means. We established that silver nanoparticles synthesized with tea extracts have higher antibacterial properties than silver nanoparticles alone. Such formulations using inexpensive tea extracts and lower concentrations of silver nanoparticles show a promising solution to fight various pathogens.

2.
Soft Matter ; 17(38): 8595-8604, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34528041

RESUMO

This work describes granular crystals held together by unusual, multipolar interactions and, under the application of an external bias, undergoing reversible structural transitions between closed and open forms. The system comprises two types of polymeric beads agitated on one or between two conductive plates and gradually acquiring charges by contact electrification. The charges thus developed induce a series of electrostatic images in the conductive supports and, in effect, the beads interact via dipolar or multipolar interactions, enabling the stabilization of non-electroneutral crystals. Furthermore, under an applied bias, the beads become polarized and their complex interactions (due to the series of image charges as well as series of image dipoles) result in open-pore crystals which return to compact forms upon bias removal. These effects are rationalized by analytical calculations, and the crystal structures observed in the experiments are reproduced by molecular dynamics simulations.

3.
ACS Appl Mater Interfaces ; 12(1): 1504-1510, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31725261

RESUMO

When a thin polymer film supported by a conductive substrate is contacted by and then separated from a micropatterned polymeric stamp, the so-called contact electrification creates electrical charges over the stamped regions. Simultaneously, image charges are induced in the conductive substrate. Together, the surface and image charges establish large fields within the film, in effect polarizing it. Upon consecutive stampings, the magnitudes of polarization add up, enabling imprinting of multilevel polarization patterns. Because the electric field is high only within the film but low across the Gaussian surface surrounding the film/substrate system, the discharge of surface charges is slow and the polarization patterns are relatively long-lived. These findings are significant since multilevel polarization states have, to date, been achieved only in ferroelectrics or some specialized polymers-the current method extends them to common polymers such as poly(methyl methacrylate), poly(vinyl pyrrolidone), or poly(vinyl acetate).

4.
Angew Chem Int Ed Engl ; 57(47): 15379-15383, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30209876

RESUMO

The magnitudes of the charges developed on contact-electrified polymers depend on not only the properties of these materials but also the nature of distant substrates on which the polymers are supported. In particular, image charges induced in conductive substrates can decrease charges on the polymers by arc discharge through the surrounding gas. This mode of charge dissipation occurs on timescales of milliseconds and can be prevented by insulating the sharp edges of the conductive supports.

5.
J Mater Chem B ; 5(31): 6292-6299, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264445

RESUMO

Molecular imprinting in polymers leads, among others, to synthetic receptors of high selectivity, comparable to that of their biological counterparts. Deposition of a thin non-porous molecularly imprinted polymer (MIP) film directly on a transducer surface enables fabrication of chemosensors for various health relevant biocompounds. However, the sensitivity of a chemosensor with such an MIP film as the recognition unit is limited, mostly because of slow analyte diffusion through this film. Herein, a simple procedure was developed to enhance, in a controlled way, the active surface area of an l-arabitol imprinted polymer film. For this, a macroporous MIP-(l-arabitol) film was synthesized and simultaneously deposited on a gold electrode of a quartz crystal resonator transducer by potentiodynamic electropolymerization. This large surface area film effectively enhanced analytical signals of mass changes at a quartz crystal microbalance. Hence, the l-arabitol limit of quantification was ∼16-fold better than that of the corresponding non-porous MIP film of the same mass.

6.
Soft Matter ; 12(18): 4162-9, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27074722

RESUMO

There is growing interest in nanostructures interacting with living organisms. However, there are still no general rules for the design of biocompatible nanodevices. Here, we present a step towards understanding the interactions between nanostructures and living cells. We study the influence of nanomechanical stress induced by zinc oxide (ZnO) nanostructures of different shapes on the viability of both prokaryotic (Gram-negative bacteria: Escherichia coli and Enterobacter aerogenes, and Gram-positive bacteria: Staphylococcus epidermidis and Corynebacterium glutamicum) and eukaryotic cells (yeast Saccharomyces cerevisiae and liver cancer cell line HepG2). Nanoparticles (NPs) and nanorods (NRs) of matching crystallographic structure (P63mc) and active surface area (in the order of 5 × 10(-2)µm(2)) are almost non-toxic for cells under static conditions. However, under conditions that enable collisions between ZnO nanostructures and cells, NRs appear to be more damaging compared to NPs. This is due to the increased probability of mechanical damage caused by nanorods upon puncturing of the cell wall and membranes. Gram-positive bacteria, which have thicker cell walls, are more resistant to nanomechanical stress induced by NRs compared to Gram-negative strains and eukaryotic cells. The presented results may be exploited to improve the properties of nanotechnology based products such as implants, drug delivery systems, antibacterial emulsions and cosmetics.


Assuntos
Nanopartículas , Óxido de Zinco , Antibacterianos , Humanos , Nanotecnologia , Nanotubos , Estresse Mecânico
7.
J Mater Chem B ; 4(8): 1448-1457, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263111

RESUMO

Porous carbon nanohybrids are promising materials as high-performance electrodes for both sensing and energy conversion applications. This is mainly due to their high specific surface area and specific physicochemical properties. Here, new porous nanohybrid materials are developed based on exfoliated MoS2 nanopetals and either negatively charged phenylsulfonated carbon nanoparticles or positively charged sulfonamide functionalized carbon nanoparticles. MoS2 nanopetals not only act as a scaffold for carbon nanoparticles to form 3D porous hierarchical architectures but also result in well-separated electrochemical signals for different compounds. The characteristics of the new carbon nanohybrid materials are studied by dynamic light scattering, zeta potential analysis, high resolution X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, infrared spectroscopy and electrochemistry. The new hybrid materials show superior charge transport capability and electrocatalytic activity toward selected biologically relevant compounds compared to earlier reports on porous carbon electrodes.

8.
Analyst ; 140(2): 670, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25453040

RESUMO

Correction for 'Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach' by Arumugam Sivanesan et al., Analyst, 2015, DOI:10.1039/c4an01778a

9.
Analyst ; 140(2): 489-96, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25374971

RESUMO

This paper demonstrates a renewed procedure for the quantification of surface-enhanced Raman scattering (SERS) enhancement factors with improved precision. The principle of this method relies on deducting the resonance Raman scattering (RRS) contribution from surface-enhanced resonance Raman scattering (SERRS) to end up with the surface enhancement (SERS) effect alone. We employed 1,8,15,22-tetraaminophthalocyanato-cobalt(II) (4α-Co(II)TAPc), a resonance Raman- and electrochemically redox-active chromophore, as a probe molecule for RRS and SERRS experiments. The number of 4α-Co(II)TAPc molecules contributing to RRS and SERRS phenomena on plasmon inactive glassy carbon (GC) and plasmon active GC/Au surfaces, respectively, has been precisely estimated by cyclic voltammetry experiments. Furthermore, the SERS substrate enhancement factor (SSEF) quantified by our approach is compared with the traditionally employed methods. We also demonstrate that the present approach of SSEF quantification can be applied for any kind of different SERS substrates by choosing an appropriate laser line and probe molecule.

10.
Analyst ; 139(20): 5061-4, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25136938

RESUMO

This work demonstrates the development of a new class of SERS substrates that allows for the simultaneous: (i) filtration of bacteria from any solution (blood, urine, water, or milk), (ii) immobilization of bacteria on the SERS platform, and (iii) enhancing the Raman signal of bacteria. The proposed platform is based on an electrospun polymer mat covered with a 90 nm layer of gold.


Assuntos
Bactérias/química , Técnicas Bacteriológicas/instrumentação , Líquidos Corporais/microbiologia , Polímeros/química , Análise Espectral Raman , Bactérias/metabolismo , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo
11.
Analyst ; 139(5): 1037-43, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24419003

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a potentially important tool in the rapid and accurate detection of pathogenic bacteria in biological fluids. However, for diagnostic application of this technique, it is necessary to develop a highly sensitive, stable, biocompatible and reproducible SERS-active substrate. In this work, we have developed a silver-gold bimetallic SERS surface by a simple potentiostatic electrodeposition of a thin gold layer on an electrochemically roughened nanoscopic silver substrate. The resultant substrate was very stable under atmospheric conditions and exhibited the strong Raman enhancement with the high reproducibility of the recorded SERS spectra of bacteria (E. coli, S. enterica, S. epidermidis, and B. megaterium). The coating of the antibiotic over the SERS substrate selectively captured bacteria from blood samples and also increased the Raman signal in contrast to the bare surface. Finally, we have utilized the antibiotic-coated hybrid surface to selectively identify different pathogenic bacteria, namely E. coli, S. enterica and S. epidermidis from blood samples.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos , Staphylococcus epidermidis/isolamento & purificação , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Ouro/metabolismo , Humanos , Prata/metabolismo , Staphylococcus epidermidis/metabolismo , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...