Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prostate ; 78(4): 257-265, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29250809

RESUMO

BACKGROUND: Microseminoprotein-beta (MSMB) is a major secretory product from prostate epithelial cells. MSMB synthesis is decreased in prostate tumors in relation to tumor grade. MSMB levels are also reduced in the circulation and MSMB is therefore used as a serum biomarker for prostate cancer. We hypothesized that cancers induce a reduction in MSMB synthesis also in the benign parts of the prostate, and that the magnitude of this response is related to tumor aggressiveness. Reduced levels of MSMB in the circulation could therefore be a consequence of reduced MSMB expression not only in tumor tissue but also in the benign prostate tissue. METHODS: MSMB expression was analyzed in prostatectomy specimens from 36 patients using immunohistochemistry and qRT-PCR. MSMB expression in the benign prostate tissue was analyzed in relation to Gleason score, tumor stage, and distance to the tumor. Furthermore, Dunning rat prostate tumors with different aggressiveness were implanted into the prostate of Copenhagen rats to study if this affected the MSMB expression in the tumor-adjacent benign rat prostate tissue. RESULTS: In prostatectomy specimens, MSMB expression was reduced in prostate tumors but also in the tumor-adjacent benign parts of the prostate. The reduction in tumor MSMB was related to tumor grade and stage, and the reduction in the benign parts of the prostate to tumor grade, stage, and distance to the tumor. Implantation of Dunning cancer cells into the rat prostate resulted in reduced MSMB protein levels in the tumor-adjacent benign prostate tissue. Rapidly growing and metastatic MatLyLu tumors had a more pronounced effect than slow-growing non-metastatic G tumors. CONCLUSION: Our data suggest that aggressive prostate tumors suppress MSMB synthesis in the benign prostate and that this could explain why serum levels of MSMB are decreased in prostate cancer patients. This study suggests that markers for aggressive cancer can be found among factors altered in parallel in prostate tumors and in the adjacent benign tissue.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Secretadas pela Próstata/metabolismo , Animais , Regulação para Baixo , Humanos , Imuno-Histoquímica , Masculino , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/patologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real
2.
PLoS One ; 10(11): e0141601, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536349

RESUMO

In order to grow, tumors need to induce supportive alterations in the tumor-bearing organ, by us named tumor instructed normal tissue (TINT) changes. We now examined if the nature and magnitude of these responses were related to tumor size and aggressiveness. Three different Dunning rat prostate tumor cells were implanted into the prostate of immune-competent rats; 1) fast growing and metastatic MatLyLu tumor cells 2) fast growing and poorly metastatic AT-1 tumor cells, and 3) slow growing and non-metastatic G tumor cells. All tumor types induced increases in macrophage, mast cell and vascular densities and in vascular cell-proliferation in the tumor-bearing prostate lobe compared to controls. These increases occurred in parallel with tumor growth. The most pronounced and rapid responses were seen in the prostate tissue surrounding MatLyLu tumors. They were, also when small, particularly effective in attracting macrophages and stimulating growth of not only micro-vessels but also small arteries and veins compared to the less aggressive AT-1 and G tumors. The nature and magnitude of tumor-induced changes in the tumor-bearing organ are related to tumor size but also to tumor aggressiveness. These findings, supported by previous observation in patient samples, suggest that one additional way to evaluate prostate tumor aggressiveness could be to monitor its effect on adjacent tissues.


Assuntos
Adenocarcinoma/secundário , Transformação Celular Neoplásica/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , Animais , Proliferação de Células , Células Cultivadas , Humanos , Masculino , Metástase Neoplásica , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 10(6): e0130076, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076453

RESUMO

Implantation of rat prostate cancer cells into the normal rat prostate results in tumor-stimulating changes in the tumor-bearing organ, for example growth of the vasculature, an altered extracellular matrix, and influx of inflammatory cells. To investigate this response further, we compared prostate morphology and the gene expression profile of tumor-bearing normal rat prostate tissue (termed tumor-instructed/indicating normal tissue (TINT)) with that of prostate tissue from controls. Dunning rat AT-1 prostate cancer cells were injected into rat prostate and tumors were established after 10 days. As controls we used intact animals, animals injected with heat-killed AT-1 cells or cell culture medium. None of the controls showed morphological TINT-changes. A rat Illumina whole-genome expression array was used to analyze gene expression in AT-1 tumors, TINT, and in medium injected prostate tissue. We identified 423 upregulated genes and 38 downregulated genes (p<0.05, ≥2-fold change) in TINT relative to controls. Quantitative RT-PCR analysis verified key TINT-changes, and they were not detected in controls. Expression of some genes was changed in a manner similar to that in the tumor, whereas other changes were exclusive to TINT. Ontological analysis using GeneGo software showed that the TINT gene expression profile was coupled to processes such as inflammation, immune response, and wounding. Many of the genes whose expression is altered in TINT have well-established roles in tumor biology, and the present findings indicate that they may also function by adapting the surrounding tumor-bearing organ to the needs of the tumor. Even though a minor tumor cell contamination in TINT samples cannot be ruled out, our data suggest that there are tumor-induced changes in gene expression in the normal tumor-bearing organ which can probably not be explained by tumor cell contamination. It is important to validate these changes further, as they could hypothetically serve as novel diagnostic and prognostic markers of prostate cancer.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Animais , Células Cultivadas , Masculino , Neoplasias da Próstata/metabolismo , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...