Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 20(2): e3001536, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167588

RESUMO

The importance of sampling from globally representative populations has been well established in human genomics. In human microbiome research, however, we lack a full understanding of the global distribution of sampling in research studies. This information is crucial to better understand global patterns of microbiome-associated diseases and to extend the health benefits of this research to all populations. Here, we analyze the country of origin of all 444,829 human microbiome samples that are available from the world's 3 largest genomic data repositories, including the Sequence Read Archive (SRA). The samples are from 2,592 studies of 19 body sites, including 220,017 samples of the gut microbiome. We show that more than 71% of samples with a known origin come from Europe, the United States, and Canada, including 46.8% from the US alone, despite the country representing only 4.3% of the global population. We also find that central and southern Asia is the most underrepresented region: Countries such as India, Pakistan, and Bangladesh account for more than a quarter of the world population but make up only 1.8% of human microbiome samples. These results demonstrate a critical need to ensure more global representation of participants in microbiome studies.


Assuntos
Microbioma Gastrointestinal/genética , Genômica/métodos , Metagenoma/genética , Metagenômica/métodos , Microbiota/genética , Ásia , Bangladesh , Canadá , Países Desenvolvidos , Europa (Continente) , Genômica/estatística & dados numéricos , Geografia , Humanos , Índia , Metagenômica/estatística & dados numéricos , Paquistão , Estados Unidos
2.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32778550

RESUMO

With the growing global threat of antimicrobial resistance, novel strategies are required for combatting resistant pathogens. Combination therapy, in which multiple drugs are used to treat an infection, has proven highly successful in the treatment of cancer and HIV. However, this practice has proven challenging for the treatment of bacterial infections due to difficulties in selecting the correct combinations and dosages. An additional challenge in infection treatment is the polymicrobial nature of many infections, which may respond to antibiotics differently than a monoculture pathogen. This study tests whether patterns of antibiotic interactions (synergy, antagonism, or independence/additivity) in monoculture can be used to predict antibiotic interactions in an obligate cross-feeding coculture. Using our previously described weakest-link hypothesis, we hypothesized antibiotic interactions in coculture based on the interactions we observed in monoculture. We then compared our predictions to observed antibiotic interactions in coculture. We tested the interactions between 10 previously identified antibiotic combinations using checkerboard assays. Although our antibiotic combinations interacted differently than predicted in our monocultures, our monoculture results were generally sufficient to predict coculture patterns based solely on the weakest-link hypothesis. These results suggest that combination therapy for cross-feeding multispecies infections may be successfully designed based on antibiotic interaction patterns for their component species.


Assuntos
Antibacterianos , Infecções Bacterianas , Antibacterianos/farmacologia , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana
3.
PLoS Pathog ; 16(7): e1008700, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687537

RESUMO

With antibiotic resistance rates on the rise, it is critical to understand how microbial species interactions influence the evolution of resistance. In obligate mutualisms, the survival of any one species (regardless of its intrinsic resistance) is contingent on the resistance of its cross-feeding partners. This sets the community antibiotic sensitivity at that of the 'weakest link' species. In this study, we tested the hypothesis that weakest link dynamics in an obligate cross-feeding relationship would limit the extent and mechanisms of antibiotic resistance evolution. We experimentally evolved an obligate co-culture and monoculture controls along gradients of two different antibiotics. We measured the rate at which each treatment increased antibiotic resistance, and sequenced terminal populations to question whether mutations differed between mono- and co-cultures. In both rifampicin and ampicillin treatments, we observed that resistance evolved more slowly in obligate co-cultures of E. coli and S. enterica than in monocultures. While we observed similar mechanisms of resistance arising under rifampicin selection, under ampicillin selection different resistance mechanisms arose in co-cultures and monocultures. In particular, mutations in an essential cell division protein, ftsI, arose in S. enterica only in co-culture. A simple mathematical model demonstrated that reliance on a partner is sufficient to slow the rate of adaptation, and can change the distribution of adaptive mutations that are acquired. Our results demonstrate that cooperative metabolic interactions can be an important modulator of resistance evolution in microbial communities.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Resistência Microbiana a Medicamentos/fisiologia , Escherichia coli/fisiologia , Interações Microbianas/fisiologia , Salmonella enterica/fisiologia , Adaptação Fisiológica/genética , Ampicilina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Técnicas de Cocultura , Escherichia coli/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos , Modelos Teóricos , Mutação , Rifampina/farmacologia , Salmonella enterica/efeitos dos fármacos
4.
Elife ; 92020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32716295

RESUMO

Preprints are becoming well established in the life sciences, but relatively little is known about the demographics of the researchers who post preprints and those who do not, or about the collaborations between preprint authors. Here, based on an analysis of 67,885 preprints posted on bioRxiv, we find that some countries, notably the United States and the United Kingdom, are overrepresented on bioRxiv relative to their overall scientific output, while other countries (including China, Russia, and Turkey) show lower levels of bioRxiv adoption. We also describe a set of 'contributor countries' (including Uganda, Croatia and Thailand): researchers from these countries appear almost exclusively as non-senior authors on international collaborations. Lastly, we find multiple journals that publish a disproportionate number of preprints from some countries, a dynamic that almost always benefits manuscripts from the US.


Assuntos
Autoria , Pré-Publicações como Assunto , Pesquisadores , Bibliometria , Pesquisa Biomédica/tendências , Conjuntos de Dados como Assunto , Internacionalidade , Sistemas On-Line/estatística & dados numéricos , Sistemas On-Line/tendências , Pré-Publicações como Assunto/tendências
5.
Proc Natl Acad Sci U S A ; 115(47): 12000-12004, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30348787

RESUMO

Mutualisms are essential for life, yet it is unclear how they arise. A two-stage process has been proposed for the evolution of mutualisms that involve exchanges of two costly resources. First, costly provisioning by one species may be selected for if that species gains a benefit from costless byproducts generated by a second species, and cooperators get disproportionate access to byproducts. Selection could then drive the second species to provide costly resources in return. Previously, a synthetic consortium evolved the first stage of this scenario: Salmonella enterica evolved costly production of methionine in exchange for costless carbon byproducts generated by an auxotrophic Escherichia coli Growth on agar plates localized the benefits of cooperation around methionine-secreting S. enterica Here, we report that further evolution of these partners on plates led to hypercooperative E. coli that secrete the sugar galactose. Sugar secretion arose repeatedly across replicate communities and is costly to E. coli producers, but enhances the growth of S. enterica The tradeoff between individual costs and group benefits led to maintenance of both cooperative and efficient E. coli genotypes in this spatially structured environment. This study provides an experimental example of de novo, bidirectional costly mutualism evolving from byproduct consumption. The results validate the plausibility of costly cooperation emerging from initially costless exchange, a scenario widely used to explain the origin of the mutualistic species interactions that are central to life on Earth.


Assuntos
Interações Microbianas/fisiologia , Simbiose/fisiologia , Evolução Biológica , Carbono , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Galactose/biossíntese , Galactose/metabolismo , Metionina/biossíntese , Metionina/genética , Salmonella enterica/genética , Salmonella enterica/metabolismo
6.
ISME J ; 12(11): 2723-2735, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29991761

RESUMO

Microbes frequently rely on metabolites excreted by other bacterial species, but little is known about how this cross-feeding influences the effect of antibiotics. We hypothesized that when species rely on each other for essential metabolites, the minimum inhibitory concentration (MIC) for all species will drop to that of the "weakest link"-the species least resistant in monoculture. We tested this hypothesis in an obligate cross-feeding system that was engineered between Escherichia coli, Salmonella enterica, and Methylobacterium extorquens. The effect of tetracycline and ampicillin were tested on both liquid and solid media. In all cases, resistant species were inhibited at significantly lower antibiotic concentrations in the cross-feeding community than in monoculture or a competitive community. However, deviation from the "weakest link" hypothesis was also observed in cross-feeding communities apparently as result of changes in the timing of growth and cross-protection. Comparable results were also observed in a clinically relevant system involving facultative cross-feeding between Pseudomonas aeruginosa and an anaerobic consortium found in the lungs of cystic fibrosis patients. P. aeruginosa was inhibited by lower concentrations of ampicillin when cross-feeding than when grown in isolation. These results suggest that cross-feeding significantly alters tolerance to antibiotics in a variety of systems.


Assuntos
Farmacorresistência Bacteriana , Ampicilina/farmacologia , Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Escherichia coli/efeitos dos fármacos , Humanos , Methylobacterium extorquens/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Tetraciclina/farmacologia
7.
FEMS Microbiol Lett ; 364(6)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333333

RESUMO

This commentary summarizes a small-group discussion that recently occurred at the American Society for Microbiology annual general meeting, ASM Microbe, in Boston, Massachusetts, on 16-20 June 2016, on the topic 'why are so few women choosing to become academics?' Specifically, the discussion focused on asking what the actual and perceived barriers to academic STEM careers women face, and possible solutions to address them which would make women more likely to seek out academic careers. The conclusions reached suggest that, despite improvement in recent years, women and minorities still face complex barriers to STEM academic careers, and further research is needed to determine the best solutions to this problem.


Assuntos
Academias e Institutos , Escolha da Profissão , Feminino , Grupos Focais , Humanos , Fatores Sexuais , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...