Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 227(1): 203-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21075104

RESUMO

The oscillatory rhythms underlying many physiological and pathological states, including absence seizures, require both the thalamus and cortices for full expression. A co-culture preparation combining cortical and thalamic explants provides a unique model for investigating how such oscillations initiate and spread. Here we investigated the dynamics of synchronized thalamocortical activity by simultaneous measurement of field-potential recordings and rapid imaging of Ca(2+) transients by fluorescence methods. Spontaneous sustained hypersynchronized "seizure-like" oscillations required reciprocal cortico-thalamocortical connections. Isolated cortical explants can independently develop brief discharges, while thalamic explants alone were unable to do so. Rapid imaging of Ca(2+) transients demonstrated deep-layer cortical initiation of oscillatory network activity in both connected and isolated explants. Further, cortical explants derived from a rat model of genetic absence epilepsy showed increased bursting duration consistent with an excitable cortex. We propose that thalamocortical oscillatory network activity initiates in deep layers of the cortex with reciprocal thalamic interconnections enabling sustained hyper-synchronization.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiopatologia , Epilepsia Tipo Ausência/patologia , Periodicidade , Tálamo/fisiopatologia , Análise de Variância , Compostos de Anilina/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Córtex Cerebral/patologia , Técnicas de Cocultura/métodos , Modelos Animais de Doenças , Epilepsia Tipo Ausência/fisiopatologia , Fluoresceínas/metabolismo , Microscopia de Fluorescência , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Tálamo/patologia
2.
Exp Neurol ; 219(1): 249-57, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19500574

RESUMO

Changes in the conductance of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel that mediates Ih are proposed to contribute to increased network excitability. Synchronous neuronal burst activity is a good reflection of network excitability and can be generated in isolated hippocampal slice cultures by removing Mg2+ from the extracellular fluid. We demonstrate that Ih contributes to this activity by increasing both the frequency and duration of bursting events. Changes in HCN channel function are also implicated in altered seizure susceptibility. Short-term application of kainic acid (KA) is known to initiate long lasting changes in neuronal networks that result in seizures, and in slice cultures was found to alter HCN mRNA levels in an isoform and hippocampal sub-region specific manner. These changes correlate with the ability of each sub-region to develop synchronous burst activity following KA that we have previously reported. Specifically, a loss of synchronous activity in the CA3 correlated with an increase in HCN2 mRNA levels that normalized concomitantly with the restoration of CA3 burst activity 7 days post insult. In contrast, in CA1 an increase in synchronous burst duration correlated with a reduction in HCN2 mRNA levels and both changes were still evident for 7 days post insult. Lamotrigine, known to increase Ih, reversed the impact of KA on burst duration in CA1 at both time-points linking a transcriptional reduction in HCN2 function to increased burst duration.


Assuntos
Potenciais de Ação/genética , Hipocampo/metabolismo , Canais Iônicos/genética , Rede Nervosa/metabolismo , Neurotoxinas/farmacologia , RNA Mensageiro/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/genética , Sincronização Cortical/efeitos dos fármacos , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Predisposição Genética para Doença/genética , Hipocampo/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ácido Caínico/farmacologia , Lamotrigina , Rede Nervosa/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Canais de Potássio , RNA Mensageiro/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Triazinas/farmacologia
3.
BMC Neurosci ; 9: 59, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-18593482

RESUMO

BACKGROUND: Excitotoxicity occurs in a number of pathogenic states including stroke and epilepsy. The adaptations of neuronal circuits in response to such insults may be expected to play an underlying role in pathogenesis. Synchronous neuronal firing can be induced in isolated hippocampal slices and involves all regions of this structure, thereby providing a measure of circuit activity. The effect of an excitotoxic insult (kainic acid, KA) on Mg2+-free-induced synchronized neuronal firing was tested in organotypic hippocampal culture by measuring extracellular field activity in CA1 and CA3. RESULTS: Within 24 hrs of the insult regional specific changes in neuronal firing patterns were evident as: (i) a dramatic reduction in the ability of CA3 to generate firing; and (ii) a contrasting increase in the frequency and duration of synchronized neuronal firing events in CA1. Two distinct processes underlie the increased propensity of CA1 to generate synchronized burst firing; a lack of ability of the CA3 region to 'pace' CA1 resulting in an increased frequency of synchronized events; and a change in the 'intrinsic' properties limited to the CA1 region, which is responsible for increased event duration. Neuronal quantification using NeuN immunoflurescent staining and stereological confocal microscopy revealed no significant cell loss in hippocampal sub regions, suggesting that changes in the properties of neurons within this region were responsible for the KA-mediated excitability changes. CONCLUSION: These results provide novel insight into adaptation of hippocampal circuits following excitotoxic injury. KA-mediated disruption of the interplay between CA3 and CA1 clearly increases the propensity to synchronized firing in CA1.


Assuntos
Hipocampo/efeitos dos fármacos , Ácido Caínico/farmacologia , Células Piramidais/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Eletrofisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/fisiologia , Imuno-Histoquímica , Ácido Caínico/toxicidade , Potenciais da Membrana/efeitos dos fármacos , Microscopia Confocal , Neurotoxinas/farmacologia , Técnicas de Cultura de Órgãos , Células Piramidais/citologia , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Ácido Caínico/agonistas , Receptores de Ácido Caínico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...