Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Environ Sci Technol ; 58(24): 10591-10600, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38847399

RESUMO

Monomethylmercury (MMHg) is a neurotoxicant that biomagnifies in marine food webs, reaching high concentrations in apex predators. To predict changes in oceanic MMHg concentrations, it is important to quantify the sources and sinks of MMHg. Here, we study mercury speciation in the California Current System through cruise sampling and modeling. Previous work in the California Current System has found that upwelling transports mercury-enriched deep waters to productive surface waters. These upwelled waters originate within the California Undercurrent water mass and are subsequently advected as a surface water parcel to the California Current. Between the two major water masses, we find that compared to the California Current, the California Undercurrent contains elevated dissolved total mercury (THg) and dimethylmercury (DMHg) concentrations by 59 and 69%, respectively. We explain that these differences result from losses during advection, specifically scavenging of THg and DMHg demethylation. We calculate a net DMHg demethylation rate of 2.0 ± 1.1% d-1 and build an empirically constrained mass budget model to demonstrate that net DMHg demethylation accounts for 61% of surface MMHg sources. These findings illustrate that DMHg is a significant source of MMHg in this region, challenging the current understanding of the major sources of marine MMHg.


Assuntos
Compostos de Metilmercúrio , Poluentes Químicos da Água , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Cadeia Alimentar , Monitoramento Ambiental , Mercúrio/análise , California
2.
Biophys J ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38937973

RESUMO

Cytochromes c'-α are nitric oxide (NO)-binding heme proteins derived from bacteria that can thrive in a wide range of temperature environments. Studies of mesophilic Alcaligenes xylosoxidans cytochrome c'-α (AxCP-α) have revealed an unusual NO-binding mechanism involving both heme faces, in which NO first binds to form a distal hexa-coordinate Fe(II)-NO (6cNO) intermediate and then displaces the proximal His to form a proximal penta-coordinate Fe(II)-NO (5cNO) final product. Here, we characterize a thermally stable cytochrome c'-α from thermophilic Hydrogenophilus thermoluteolus (PhCP-α) to understand how protein thermal stability affects NO binding. Electron paramagnetic and resonance Raman spectroscopies reveal the formation of a PhCP-α 5cNO product, with time-resolved (stopped-flow) UV-vis absorbance indicating the involvement of a 6cNO intermediate. Relative to AxCP-α, the rates of 6cNO and 5cNO formation in PhCP-α are ∼11- and ∼13-fold lower, respectively. Notably, x-ray crystal structures of PhCP-α in the presence and absence of NO suggest that the sluggish formation of the proximal 5cNO product results from conformational rigidity: the Arg-132 residue (adjacent to the proximal His ligand) is held in place by a salt bridge between Arg-75 and Glu-135 (an interaction not present in AxCP-α or a psychrophilic counterpart). Overall, our data provide fresh insights into structural factors controlling NO binding in heme proteins, including 5cNO complexes relevant to eukaryotic NO sensors.

3.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38175703

RESUMO

Immunoglobulin (IG) replacement products are used routinely in patients with immune deficiency and other immune dysregulation disorders who have poor responses to vaccination and require passive immunity conferred by commercial antibody products. The binding, neutralizing, and protective activity of intravenously administered IG against SARS-CoV-2 emerging variants remains unknown. Here, we tested 198 different IG products manufactured from December 2019 to August 2022. We show that prepandemic IG had no appreciable cross-reactivity or neutralizing activity against SARS-CoV-2. Anti-spike antibody titers and neutralizing activity against SARS-CoV-2 WA1/2020 D614G increased gradually after the pandemic started and reached levels comparable to vaccinated healthy donors 18 months after the diagnosis of the first COVID-19 case in the United States in January 2020. The average time between production to infusion of IG products was 8 months, which resulted in poor neutralization of the variant strain circulating at the time of infusion. Despite limited neutralizing activity, IG prophylaxis with clinically relevant dosing protected susceptible K18-hACE2-transgenic mice against clinical disease, lung infection, and lung inflammation caused by the XBB.1.5 Omicron variant. Moreover, following IG prophylaxis, levels of XBB.1.5 infection in the lung were higher in FcγR-KO mice than in WT mice. Thus, IG replacement products with poor neutralizing activity against evolving SARS-CoV-2 variants likely confer protection to patients with immune deficiency disorders through Fc effector function mechanisms.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos , Reações Cruzadas , Camundongos Transgênicos
4.
Cell ; 186(22): 4818-4833.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804831

RESUMO

MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.


Assuntos
Alphavirus , Animais , Humanos , Febre de Chikungunya , Vírus Chikungunya/química , Mamíferos , Receptores Virais/metabolismo
5.
Genome ; 66(9): 251-260, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270848

RESUMO

The only population of the endangered blue racer (Coluber constrictor foxii) in Canada occurs on Pelee Island, Ontario. The species is threatened by multiple factors, including habitat degradation and loss, road mortality, persecution, and potentially predation. We designed and evaluated the performance of an environmental DNA droplet digital PCR assay that can be used for multiple facets of conservation of this species. We tested the assay in silico and in vitro using DNA of blue racers and co-occurring snake species and estimated the LOD and LOQ using synthetic DNA. As wild turkey predation has been suggested to negatively affect racers, we tested the assay on eight wild turkey faecal samples. Our assay is specific, can detect the target species at very low levels of concentration (0.002 copies/µL), and can accurately quantify copy numbers ≥ 0.26 copies/µL. We detected no racer DNA in any wild turkey faecal sample. More faecal samples collected at strategic locations during snake peak activity on Pelee Island would enable a more thorough assessment of the possibility of turkey predation. Our assay should be effective for other environmental samples and can be used for investigating other factors negatively affecting blue racers, for example, helping to quantify blue racer habitat suitability and site occupancy.


Assuntos
Serpentes , Animais , Reação em Cadeia da Polimerase , Especificidade da Espécie , Ontário
6.
J Biol Chem ; 299(6): 104742, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100286

RESUMO

The structural basis by which gas-binding heme proteins control their interactions with NO, CO, and O2 is fundamental to enzymology, biotechnology, and human health. Cytochromes c' (cyts c') are a group of putative NO-binding heme proteins that fall into two families: the well-characterized four alpha helix bundle fold (cyts c'-α) and an unrelated family with a large beta-sheet fold (cyts c'-ß) resembling that of cytochromes P460. A recent structure of cyt c'-ß from Methylococcus capsulatus Bath revealed two heme pocket phenylalanine residues (Phe 32 and Phe 61) positioned near the distal gas-binding site. This feature, dubbed the "Phe cap," is highly conserved within the sequences of other cyts c'-ß but is absent in their close homologs, the hydroxylamine-oxidizing cytochromes P460, although some do contain a single Phe residue. Here, we report an integrated structural, spectroscopic, and kinetic characterization of cyt c'-ß from Methylococcus capsulatus Bath complexes with diatomic gases, focusing on the interaction of the Phe cap with NO and CO. Significantly, crystallographic and resonance Raman data show that orientation of the electron-rich aromatic ring face of Phe 32 toward distally bound NO or CO is associated with weakened backbonding and higher off rates. Moreover, we propose that an aromatic quadrupole also contributes to the unusually weak backbonding reported for some heme-based gas sensors, including the mammalian NO sensor, soluble guanylate cyclase. Collectively, this study sheds light on the influence of highly conserved distal Phe residues on heme-gas complexes of cytochrome c'-ß, including the potential for aromatic quadrupoles to modulate NO and CO binding in other heme proteins.


Assuntos
Citocromos c' , Methylococcus capsulatus , Humanos , Citocromos c'/química , Gases , Heme/metabolismo , Hemeproteínas/genética , Hemeproteínas/metabolismo , Methylococcus capsulatus/química
7.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 6): 217-225, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35647678

RESUMO

Cytochrome c'-ß is a heme protein that belongs to the cytochrome P460 family and consists of homodimeric subunits with a predominantly antiparallel ß-sheet fold. Here, the crystal structure of cytochrome c'-ß from the thermophilic Thermus thermophilus (TTCP-ß) is reported at 1.74 Šresolution. TTCP-ß has a typical antiparallel ß-sheet fold similar to that of cytochrome c'-ß from the moderately thermophilic Methylococcus capsulatus (MCCP-ß). The phenylalanine cap structure around the distal side of the heme is also similar in TTCP-ß and MCCP-ß, indicating that both proteins similarly bind nitric oxide and carbon monoxide, as observed spectroscopically. Notably, TTCP-ß exhibits a denaturation temperature of 117°C, which is higher than that of MCCP-ß. Mutational analysis reveals that the increased homodimeric interface area of TTCP-ß contributes to its high thermal stability. Furthermore, 14 proline residues, which are mostly located in the TTCP-ß loop regions, possibly contribute to the rigid loop structure compared with MCCP-ß, which has only six proline residues. These findings, together with those from phylogenetic analysis, suggest that the structures of Thermus cytochromes c'-ß, including TTCP-ß, are optimized for function under the high-temperature conditions in which the source organisms live.


Assuntos
Citocromos c' , Thermus thermophilus , Sequência de Aminoácidos , Cristalografia por Raios X , Citocromos c , Filogenia , Prolina , Thermus thermophilus/química
8.
Cell Rep Med ; 3(6): 100653, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35688161

RESUMO

Individuals with primary antibody deficiency (PAD) syndromes have poor humoral immune responses requiring immunoglobulin replacement therapy. We followed individuals with PAD after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination by evaluating their immunoglobulin replacement products and serum for anti-spike binding, Fcγ receptor (FcγR) binding, and neutralizing activities. The immunoglobulin replacement products tested have low anti-spike and receptor-binding domain (RBD) titers and neutralizing activity. In coronavirus disease 2019 (COVID-19)-naive individuals with PAD, anti-spike and RBD titers increase after mRNA vaccination but wane by 90 days. Those vaccinated after SARS-CoV-2 infection develop higher and more sustained responses comparable with healthy donors. Most vaccinated individuals with PAD have serum-neutralizing antibody titers above an estimated correlate of protection against ancestral SARS-CoV-2 and Delta virus but not against Omicron virus, although this is improved by boosting. Thus, some immunoglobulin replacement products likely have limited protective activity, and immunization and boosting of individuals with PAD with mRNA vaccines should confer at least short-term immunity against SARS-CoV-2 variants, including Omicron.


Assuntos
COVID-19 , Síndromes de Imunodeficiência , Vacinas Virais , Formação de Anticorpos , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas Virais/genética , Vacinas de mRNA
9.
Sci Total Environ ; 806(Pt 3): 150446, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599961

RESUMO

Galveston Bay is an anthropogenic-influenced estuary where industrial runoff, wastewater, and shipping vessel discharges enter the bay alongside natural freshwaters. Here, heavy metal concentrations in Galveston Bay surface sediment (2-year quarterly time-series) and a single sediment core are presented to explore the anthropogenic and geochemical controls on the spatiotemporal distributions, fluxes, sources, and potential toxicity of metals within this estuary. Samples were leached to distinguish authigenic sediment coatings from geogenic crystalline material. Spatial differences dominate the observed concentration variability, with higher metal concentrations in eastern vs. western bay sediments, as the eastern bay is where metals are flocculated from the dissolved phase and/or sediments are hydrodynamically trapped. Temporal variations are a secondary controlling factor, with sediment metal concentrations positively correlated with Trinity River discharge. Core data indicate stable Fe, Pb Ni, Cd and Hg levels during the 20th century but increasing Cu and Zn levels in recent years. Galveston Bay sediments are potentially toxic for As, Cd, Cr, Cu, Ni, Sb, Zn and Hg, based on federal toxicity standards. Enrichment factors and statistical analyses suggest that Ni and Cr originate from natural sources, while anthropogenic sources dominate supply of As, Cd, Hg, Ni, Pb, Sb, and Zn. This unique time-series shows that major flooding events, such as Hurricane Harvey in 2017, affect surface sediment metal distributions in Galveston Bay, but not any more than the natural geochemical controls on spatiotemporal distributions of metals in anthropogenic-influenced estuaries.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Baías , China , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Metais Pesados/análise , Texas , Poluentes Químicos da Água/análise
10.
Front Immunol ; 13: 1033770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618402

RESUMO

Background: Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination. Methods: Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination. Results: After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4+ T cell responses that overall were comparable to healthy individuals. Nonetheless, individuals with PAD syndromes had reduced IgG1+ and CD11c+ memory B cell responses following the primary vaccination series, with the defect in IgG1 class-switching rescued following mRNA booster doses. Boosting also elicited an increase in the SARS-CoV-2-specific B and T cell response and the development of Omicron-specific memory B cells in COVID-19-naïve PAD patients. Individuals that lacked detectable B cell responses following primary vaccination did not benefit from booster vaccination. Conclusion: Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals.


Assuntos
COVID-19 , Doenças da Imunodeficiência Primária , Adulto , Humanos , Imunoglobulina G , Células B de Memória , Vacinas contra COVID-19 , SARS-CoV-2 , Estudos Prospectivos , COVID-19/prevenção & controle , RNA Mensageiro , Vacinação
11.
Br J Radiol ; 94(1128): 20210332, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34541861

RESUMO

OBJECTIVES: To undertake the first systematic review examining the performance of artificial intelligence (AI) applied to cross-sectional imaging for the diagnosis of acquired pulmonary arterial hypertension (PAH). METHODS: Searches of Medline, Embase and Web of Science were undertaken on 1 July 2020. Original publications studying AI applied to cross-sectional imaging for the diagnosis of acquired PAH in adults were identified through two-staged double-blinded review. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies and Checklist for Artificial Intelligence in Medicine frameworks. Narrative synthesis was undertaken following Synthesis Without Meta-Analysis guidelines. This review received no funding and was registered in the International Prospective Register of Systematic Reviews (ID:CRD42020196295). RESULTS: Searches returned 476 citations. Three retrospective observational studies, published between 2016 and 2020, were selected for data-extraction. Two methods applied to cardiac-MRI demonstrated high diagnostic accuracy, with the best model achieving AUC=0.90 (95% CI: 0.85-0.93), 89% sensitivity and 81% specificity. Stronger results were achieved using cardiac-MRI for classification of idiopathic PAH, achieving AUC=0.97 (95% CI: 0.89-1.0), 96% sensitivity and 87% specificity. One study reporting CT-based AI demonstrated lower accuracy, with 64.6% sensitivity and 97.0% specificity. CONCLUSIONS: Automated methods for identifying PAH on cardiac-MRI are emerging with high diagnostic accuracy. AI applied to cross-sectional imaging may provide non-invasive support to reduce diagnostic delay in PAH. This would be helped by stronger solutions in other modalities. ADVANCES IN KNOWLEDGE: There is a significant shortage of research in this important area. Early detection of PAH would be supported by further research advances on the promising emerging technologies identified.


Assuntos
Inteligência Artificial , Hipertensão Pulmonar/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Genome Biol Evol ; 11(9): 2563-2573, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418011

RESUMO

Organisms living in the subterranean biome evolve extreme characteristics including vision loss and sensory expansion. Despite prior work linking certain genes to Mendelian traits, the genetic basis for complex cave-associated traits remains unknown. Moreover, it is unclear if certain forms of genetic variation (e.g., indels, copy number variants) are more common in regressive evolution. Progress in this area has been limited by a lack of suitable natural model systems and genomic resources. In recent years, the Mexican tetra, Astyanax mexicanus, has advanced as a model for cave biology and regressive evolution. Here, we present the results of a genome-wide screen for in-frame indels using alignments of RNA-sequencing reads to the draft cavefish genome. Mutations were discovered in three genes associated with blood physiology (mlf1, plg, and wdr1), two genes associated with growth factor signaling (ghrb, rnf126), one gene linked to collagen defects (mia3), and one gene which may have a global epigenetic impact on gene expression (mki67). With one exception, polymorphisms were shared between Pachón and Tinaja cavefish lineages, and different from the surface-dwelling lineage. We confirmed the presence of mutations using direct Sanger sequencing and discovered remarkably similar developmental expression in both morphs despite substantial coding sequence alterations. Further, three mutated genes mapped near previously established quantitative trait loci associated with jaw size, condition factor, lens size, and neuromast variation. This work reveals previously unappreciated traits evolving in this species under environmental pressures (e.g., blood physiology) and provides insight to genetic changes underlying convergence of organisms evolving in complete darkness.


Assuntos
Characidae/genética , Proteínas de Peixes/genética , Mutação INDEL , Animais , Evolução Biológica , Cavernas , Characidae/classificação , Characidae/crescimento & desenvolvimento , Characidae/fisiologia , Perfilação da Expressão Gênica , Genoma , Locos de Características Quantitativas , Análise de Sequência de RNA
14.
Chem Sci ; 10(10): 3031-3041, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30996884

RESUMO

Nature is adept at utilising highly similar protein folds to carry out very different functions, yet the mechanisms by which this functional divergence occurs remain poorly characterised. In certain methanotrophic bacteria, two homologous pentacoordinate c-type heme proteins have been identified: a cytochrome P460 (cyt P460) and a cytochrome c'-ß (cyt cp-ß). Cytochromes P460 are able to convert hydroxylamine to nitrous oxide (N2O), a potent greenhouse gas. This reactivity is similar to that of hydroxylamine oxidoreductase (HAO), which is a key enzyme in nitrifying and methanotrophic bacteria. Cyt P460 and HAO both have unusual protein-heme cross-links, formed by a Tyr residue in HAO and a Lys in cyt P460. In contrast, cyts cp-ß (the only known cytochromes c' with a ß-sheet fold) lack this crosslink and appears to be optimized for binding non-polar molecules (including NO and CO) without enzymatic conversion. Our bioinformatics analysis supports the proposal that cyt cp-ß may have evolved from cyt P460 via a gene duplication event. Using high-resolution X-ray crystallography, UV-visible absorption, electron paramagnetic resonance (EPR) and resonance Raman spectroscopy, we have characterized the overall protein folding and active site structures of cyt cp-ß and cyt P460 from the obligate methanotroph, Methylococcus capsulatus (Bath). These proteins display a similar ß-sheet protein fold, together with a pattern of changes to the heme pocket regions and localised tertiary structure that have converted a hydroxylamine oxidizing enzyme into a gas-binding protein. Structural comparisons provide insights relevant to enzyme redesign for synthetic enzymology and engineering of gas sensor proteins. We also show the widespread occurrence of cyts cp-ß and characterise their phylogeny.

16.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389763

RESUMO

The gastrointestinal colonizer Enterococcus faecium is a leading cause of hospital-acquired infections. Multidrug-resistant (MDR) E. faecium isolates are particularly concerning for infection treatment. Previous comparative genomic studies revealed that subspecies referred to as clade A and clade B exist within E. faecium MDR E. faecium isolates belong to clade A, while clade B consists of drug-susceptible fecal commensal E. faecium isolates. Isolates from clade A are further grouped into two subclades, clades A1 and A2. In general, clade A1 isolates are hospital-epidemic isolates, whereas clade A2 isolates are isolates from animals and sporadic human infections. Such phylogenetic separation indicates that reduced gene exchange occurs between the clades. We hypothesize that endogenous barriers to gene exchange exist between E. faecium clades. Restriction-modification (R-M) systems are such barriers in other microbes. We utilized a bioinformatics analysis coupled with second-generation and third-generation deep-sequencing platforms to characterize the methylomes of two representative E. faecium strains, one from clade A1 and one from clade B. We identified a type I R-M system that is clade A1 specific, is active for DNA methylation, and significantly reduces the transformability of clade A1 E. faecium Based on our results, we conclude that R-M systems act as barriers to horizontal gene exchange in E. faecium and propose that R-M systems contribute to E. faecium subspecies separation.IMPORTANCEEnterococcus faecium is a leading cause of hospital-acquired infections around the world. Rising antibiotic resistance in certain E. faecium lineages leaves fewer treatment options. The overarching aim of this work was to determine whether restriction-modification (R-M) systems contribute to the structure of the E. faecium species, wherein hospital-epidemic and non-hospital-epidemic isolates have distinct evolutionary histories and highly resolved clade structures. R-M provides bacteria with a type of innate immunity to horizontal gene transfer (HGT). We identified a type I R-M system that is enriched in the hospital-epidemic clade and determined that it is active for DNA modification activity and significantly impacts HGT. Overall, this work is important because it provides a mechanism for the observed clade structure of E. faecium as well as a mechanism for facilitated gene exchange among hospital-epidemic E. faecium isolates.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo I/genética , Enterococcus faecium/genética , Evolução Molecular , Genoma Bacteriano/genética , Biologia Computacional , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Enterococcus faecium/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Hospitais
17.
Int J Mol Sci ; 20(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602666

RESUMO

The growing prevalence of metabolic syndrome (MetS) in the U.S. and even worldwide is becoming a serious health problem and economic burden. MetS has become a crucial risk factor for the development of type 2 diabetes mellitus (T2D) and cardiovascular diseases (CVD). The rising rates of CVD and diabetes, which are the two leading causes of death, simultaneously exist. To prevent the progression of MetS to diabetes and CVD, we have to understand how MetS occurs and how it progresses. Too many causative factors interact with each other, making the investigation and treatment of metabolic syndrome a very complex issue. Recently, a number of studies were conducted to investigate mechanisms and interventions of MetS, from different aspects. In this review, the proposed and demonstrated mechanisms of MetS pathogenesis are discussed and summarized. More importantly, different interventions are discussed, so that health practitioners can have a better understanding of the most recent research progress and have available references for their daily practice.


Assuntos
Dietoterapia/métodos , Síndrome Metabólica/etiologia , Animais , Humanos , Resistência à Insulina , Síndrome Metabólica/dietoterapia , Estresse Oxidativo , Transdução de Sinais
18.
Artigo em Inglês | MEDLINE | ID: mdl-28223392

RESUMO

Synthesis and integrity of the cytoplasmic membrane are fundamental to cellular life. Experimental evolution studies have hinted at unique physiology in the Gram-positive bacteria Streptococcus mitis and S. oralis These organisms commonly cause bacteremia and infectious endocarditis (IE) but are rarely investigated in mechanistic studies of physiology and evolution. Unlike in other Gram-positive pathogens, high-level (MIC ≥ 256 µg/ml) daptomycin resistance rapidly emerges in S. mitis and S. oralis after a single drug exposure. In this study, we found that inactivating mutations in cdsA are associated with high-level daptomycin resistance in S. mitis and S. oralis IE isolates. This is surprising given that cdsA is an essential gene for life in commonly studied model organisms. CdsA is the enzyme responsible for the synthesis of CDP-diacylglycerol, a key intermediate for the biosynthesis of all major phospholipids in prokaryotes and most anionic phospholipids in eukaryotes. Lipidomic analysis by liquid chromatography-mass spectrometry (LC-MS) showed that daptomycin-resistant strains have an accumulation of phosphatidic acid and completely lack phosphatidylglycerol and cardiolipin, two major anionic phospholipids in wild-type strains, confirming the loss of function of CdsA in the daptomycin-resistant strains. To our knowledge, these daptomycin-resistant streptococci represent the first model organisms whose viability is CdsA independent. The distinct membrane compositions resulting from the inactivation of cdsA not only provide novel insights into the mechanisms of daptomycin resistance but also offer unique opportunities to study the physiological functions of major anionic phospholipids in bacteria.


Assuntos
Antibacterianos/farmacologia , Daptomicina/farmacologia , Nucleotidiltransferases/genética , Streptococcus mitis/efeitos dos fármacos , Streptococcus mitis/genética , Streptococcus oralis/efeitos dos fármacos , Streptococcus oralis/genética , Cardiolipinas/metabolismo , Diglicerídeos de Citidina Difosfato/biossíntese , Farmacorresistência Bacteriana/genética , Humanos , Lipídeos de Membrana/biossíntese , Testes de Sensibilidade Microbiana , Ácidos Fosfatídicos/metabolismo , Fosfatidilgliceróis/metabolismo , Fosfolipídeos/biossíntese , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus mitis/isolamento & purificação , Streptococcus oralis/isolamento & purificação
19.
Antimicrob Agents Chemother ; 59(7): 4139-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25941217

RESUMO

Clostridium difficile infection (CDI) is an urgent public health concern causing considerable clinical and economic burdens. CDI can be treated with antibiotics, but recurrence of the disease following successful treatment of the initial episode often occurs. Surotomycin is a rapidly bactericidal cyclic lipopeptide antibiotic that is in clinical trials for CDI treatment and that has demonstrated superiority over vancomycin in preventing CDI relapse. Surotomycin is a structural analogue of the membrane-active antibiotic daptomycin. Previously, we utilized in vitro serial passage experiments to derive C. difficile strains with reduced surotomycin susceptibilities. The parent strains used included ATCC 700057 and clinical isolates from the restriction endonuclease analysis (REA) groups BI and K. Serial passage experiments were also performed with vancomycin-resistant and vancomycin-susceptible Enterococcus faecium and Enterococcus faecalis. The goal of this study is to identify mutations associated with reduced surotomycin susceptibility in C. difficile and enterococci. Illumina sequence data generated for the parent strains and serial passage isolates were compared. We identified nonsynonymous mutations in genes coding for cardiolipin synthase in C. difficile ATCC 700057, enoyl-(acyl carrier protein) reductase II (FabK) and cell division protein FtsH2 in C. difficile REA type BI, and a PadR family transcriptional regulator in C. difficile REA type K. Among the 4 enterococcal strain pairs, 20 mutations were identified, and those mutations overlap those associated with daptomycin resistance. These data give insight into the mechanism of action of surotomycin against C. difficile, possible mechanisms for resistance emergence during clinical use, and the potential impacts of surotomycin therapy on intestinal enterococci.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Farmacorresistência Bacteriana/genética , Enterococcus/efeitos dos fármacos , Enterococcus/genética , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Proteínas de Bactérias/genética , Biologia Computacional , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Daptomicina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mutação/genética , Proibitinas , Mapeamento por Restrição , Resistência a Vancomicina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...