Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 15(3): 484-500, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35386399

RESUMO

The sea lamprey (Petromyzon marinus) is an invasive species in the Great Lakes and the focus of a large control and assessment program. Current assessment methods provide information on the census size of spawning adult sea lamprey in a small number of streams, but information characterizing reproductive success of spawning adults is rarely available. We used RAD-capture sequencing to genotype single nucleotide polymorphism (SNP) loci for ~1600 sea lamprey larvae collected from three streams in northern Michigan (Black Mallard, Pigeon, and Ocqueoc Rivers). Larval genotypes were used to reconstruct family pedigrees, which were combined with Gaussian mixture analyses to identify larval age classes for estimation of spawning population size. Two complementary estimates of effective breeding size (N b), as well as the extrapolated minimum number of spawners (N s), were also generated for each cohort. Reconstructed pedigrees highlighted inaccuracies of cohort assignments from traditionally used mixture analyses. However, combining genotype-based pedigree information with length-at-age assignment of cohort membership greatly improved cohort identification accuracy. Population estimates across all three streams sampled in this study indicate a small number of successfully spawning adults when barriers were in operation, implying that barriers limited adult spawning numbers but were not completely effective at blocking access to spawning habitats. Thus, the large numbers of larvae present in sampled systems were a poor indicator of spawning adult abundance. Overall, pedigree-based N b and N s estimates provide a promising and rapid assessment tool for sea lamprey and other species.

2.
Ecol Evol ; 10(3): 1469-1488, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32076528

RESUMO

Genomic tools are lacking for invasive and native populations of sea lamprey (Petromyzon marinus). Our objective was to discover single nucleotide polymorphism (SNP) loci to conduct pedigree analyses to quantify reproductive contributions of adult sea lampreys and dispersion of sibling larval sea lampreys of different ages in Great Lakes tributaries. Additional applications of data were explored using additional geographically expansive samples. We used restriction site-associated DNA sequencing (RAD-Seq) to discover genetic variation in Duffins Creek (DC), Ontario, Canada, and the St. Clair River (SCR), Michigan, USA. We subsequently developed RAD capture baits to genotype 3,446 RAD loci that contained 11,970 SNPs. Based on RAD capture assays, estimates of variance in SNP allele frequency among five Great Lakes tributary populations (mean F ST 0.008; range 0.00-0.018) were concordant with previous microsatellite-based studies; however, outlier loci were identified that contributed substantially to spatial population genetic structure. At finer scales within streams, simulations indicated that accuracy in genetic pedigree reconstruction was high when 200 or 500 independent loci were used, even in situations of high spawner abundance (e.g., 1,000 adults). Based on empirical collections of larval sea lamprey genotypes, we found that age-1 and age-2 families of full and half-siblings were widely but nonrandomly distributed within stream reaches sampled. Using the genomic scale set of SNP loci developed in this study, biologists can rapidly genotype sea lamprey in non-native and native ranges to investigate questions pertaining to population structuring and reproductive ecology at previously unattainable scales.

3.
Environ Toxicol Chem ; 35(12): 3058-3061, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27175944

RESUMO

The authors developed a package, LW1949, for use with the statistical software R to automatically carry out the manual steps of Litchfield and Wilcoxon's method of evaluating dose-effect experiments. The LW1949 package consistently finds the best fitting dose-effect relation by minimizing the chi-squared statistic of the observed and expected number of affected individuals and substantially speeds up the line-fitting process and other calculations that Litchfield and Wilcoxon originally carried out by hand. Environ Toxicol Chem 2016;35:3058-3061. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.


Assuntos
Software , Automação , Biologia Computacional/métodos , Relação Dose-Resposta a Droga
4.
Oecologia ; 162(3): 641-51, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19888603

RESUMO

Climate and dispersal are the two most commonly cited mechanisms to explain spatial synchrony among time series of animal populations, and climate is typically most important for fishes. Using data from 1978-2006, we quantified the spatial synchrony in recruitment and population catch-per-unit-effort (CPUE) for bloater (Coregonus hoyi) populations across lakes Superior, Michigan, and Huron. In this natural field experiment, climate was highly synchronous across lakes but the likelihood of dispersal between lakes differed. When data from all lakes were pooled, modified correlograms revealed spatial synchrony to occur up to 800 km for long-term (data not detrended) trends and up to 600 km for short-term (data detrended by the annual rate of change) trends. This large spatial synchrony more than doubles the scale previously observed in freshwater fish populations, and exceeds the scale found in most marine or estuarine populations. When analyzing the data separately for within- and between-lake pairs, spatial synchrony was always observed within lakes, up to 400 or 600 km. Conversely, between-lake synchrony did not occur among short-term trends, and for long-term trends, the scale of synchrony was highly variable. For recruit CPUE, synchrony occurred up to 600 km between both lakes Michigan and Huron (where dispersal was most likely) and lakes Michigan and Superior (where dispersal was least likely), but failed to occur between lakes Huron and Superior (where dispersal likelihood was intermediate). When considering the scale of putative bloater dispersal and genetic information from previous studies, we concluded that dispersal was likely underlying within-lake synchrony but climate was more likely underlying between-lake synchrony. The broad scale of synchrony in Great Lakes bloater populations increases their probability of extirpation, a timely message for fishery managers given current low levels of bloater abundance.


Assuntos
Clima , Peixes/fisiologia , Animais , Água Doce , Dinâmica Populacional
5.
Environ Monit Assess ; 129(1-3): 169-78, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16957842

RESUMO

We explored temporal trends of young-of-year (YOY) fishes caught in bottom trawl hauls at an established offshore monitoring site in Lake Erie in fall during 1961-2001. Sampling was conducted during morning, afternoon, and night in each year. Catches per hour (CPH) of alewife (Alosa pseudoharengus) YOY were relatively low and exhibited no temporal trend. This result was consistent with the species' intolerance to Lake Erie's adverse winter water temperatures. Gizzard shad (Dorosoma cepedianum) YOY decreased sharply after 1991, which was consistent with recent oligotrophication of the lake. Following the establishment in 1979 and rapid increase of white perch (Morone americana) YOY, white bass (Morone chrysops) and freshwater drum (Aplodinotus grunniens) YOY decreased. Trout-perch (Percopsis omiscomaycus) YOY decreased during 1986-1991, but recovered to previous levels during 1991-2001. The recovery coincided with the resurgence of mayflies (Ephemoptera) in the lake. CPH of spottail shiner (Notropis hudsonius) and emerald shiner (N. atherinoides) YOY exhibited no temporal trend between 1961 and the late 1970s to early 1980s. CPH of yellow perch (Perca flavescens) YOY decreased during 1961-1988, and walleye (Sander vitreum) YOY increased overall during the time series. These observations were consistent with published studies of adults in the region. CPH of 4 of the 10 species of YOY considered were greatest during night. CPH for walleye YOY was higher in the morning than in the afternoon, but there was no significant difference between night and morning abundances. The results suggest that (1) CPH of YOY fishes may be a useful monitoring tool for Lake Erie, and (2) offshore monitoring programs that do not include night sampling periods may underestimate recruitment for several common species.


Assuntos
Monitoramento Ambiental/métodos , Peixes/crescimento & desenvolvimento , Animais , Great Lakes Region , Densidade Demográfica , Estudos de Amostragem , Estados Unidos
6.
Environ Toxicol Chem ; 24(6): 1518-22, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16117131

RESUMO

Polybrominated diphenyl ether (PBDE) flame-retardants have been identified as an emergent contaminants issue in many parts of the world. In vitro analyses were conducted to test the hypothesis that selected PBDEs congeners affect viability, apoptosis, and necrosis of thymocytes from laboratory-reared lake trout (Salvelinus namaycush). At current environmental levels (< 1 mg/L), effects of the tested PBDEs on thymocytes were negligible. However, at 100 mg/L, major effects were seen for congener brominated diphenyl ether 47 (BDE-47) and minor effects were seen for congener BDE-99.


Assuntos
Retardadores de Chama/toxicidade , Éteres Fenílicos/toxicidade , Bifenil Polibromatos/toxicidade , Timo/efeitos dos fármacos , Truta , Animais , Apoptose/efeitos dos fármacos , Retardadores de Chama/análise , Great Lakes Region , Éteres Difenil Halogenados , Necrose/induzido quimicamente , Éteres Fenílicos/análise , Bifenil Polibromatos/análise , Timo/citologia
7.
Fish Shellfish Immunol ; 13(1): 11-26, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12201650

RESUMO

The immunotoxicity of chemical combinations commonly encountered by the lake trout (Salvelinus namaycush) immune system was the focus of this study. It was hypothesised that combinations of an environmental contaminant (mercuric chloride or Aroclor 1254) and an immunomodulatory agent (bacterial endotoxin or cortisol) might interact to produce a greater toxicity than that of the environmental contaminant alone at concentrations typically encountered in piscine blood and other tissues. Thus lake trout thymocytes were isolated and treated with mercuric chloride or Aroclor 1254 in the presence and absence of cortisol or lipopolysaccharide. Incubations were performed for 6 or 20 h at 4 degrees C or 10 degrees C. Lipopolysaccharide did not affect the toxicity of either contaminant. In contrast, cortisol enhanced the toxicity of both environmental contaminants. Hence, stressors that lead to increased cortisol production, but not lipopolysaccharide directly, may increase the toxicity of mercury and Aroclor 1254 to lake trout thymocytes.


Assuntos
Adjuvantes Imunológicos/toxicidade , Poluentes Ambientais/toxicidade , Cloreto de Mercúrio/toxicidade , Timo/citologia , Truta/imunologia , Animais , Antitireóideos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Exposição Ambiental/efeitos adversos , Citometria de Fluxo/veterinária , Hidrocortisona/toxicidade , Sistema Imunitário/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Temperatura , Timo/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...