Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 114(1): 142-158, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710652

RESUMO

Polyploidy has played an extensive role in the evolution of flowering plants. Allopolyploids, with subgenomes containing duplicated gene pairs called homeologs, can show rapid transcriptome changes including novel alternative splicing (AS) patterns. The extent to which abiotic stress modulates AS of homeologs is a nascent topic in polyploidy research. We subjected both resynthesized and natural lines of polyploid Brassica napus, along with the progenitors Brassica rapa and Brassica oleracea, to infection with the fungal pathogen Sclerotinia sclerotiorum. RNA-sequencing analyses revealed widespread divergence between polyploid subgenomes in both gene expression and AS patterns. Resynthesized B. napus displayed significantly more A and C subgenome biased homeologs under pathogen infection than during uninfected growth. Differential AS (DAS) in response to infection was highest in natural B. napus (12 709 DAS events) and lower in resynthesized B. napus (8863 DAS events). Natural B. napus had more upregulated events and fewer downregulated events. There was a global expression bias towards the B. oleracea-derived (C) subgenome in both resynthesized and natural B. napus, enhanced by widespread non-parental downregulation of the B. rapa-derived (A) homeolog. In the resynthesized B. napus, this resulted in a disproportionate C subgenome contribution to the pathogen defense response, characterized by biases in both transcript expression levels and the proportion of induced genes. Our results elucidate the complex ways in which Sclerotinia infection affects expression and AS of homeologous genes in resynthesized and natural B. napus.


Assuntos
Ascomicetos , Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Processamento Alternativo/genética , Brassica rapa/genética , Poliploidia
2.
Front Plant Sci ; 13: 923069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845637

RESUMO

Orphan genes (OGs) are protein-coding genes that are restricted to particular clades or species and lack homology with genes from other organisms, making their biological functions difficult to predict. OGs can rapidly originate and become functional; consequently, they may support rapid adaptation to environmental changes. Extensive spread of mobile elements and whole-genome duplication occurred in the Saccharum group, which may have contributed to the origin and diversification of OGs in the sugarcane genome. Here, we identified and characterized OGs in sugarcane, examined their expression profiles across tissues and genotypes, and investigated their regulation under varying conditions. We identified 319 OGs in the Saccharum spontaneum genome without detected homology to protein-coding genes in green plants, except those belonging to Saccharinae. Transcriptomic analysis revealed 288 sugarcane OGs with detectable expression levels in at least one tissue or genotype. We observed similar expression patterns of OGs in sugarcane genotypes originating from the closest geographical locations. We also observed tissue-specific expression of some OGs, possibly indicating a complex regulatory process for maintaining diverse functional activity of these genes across sugarcane tissues and genotypes. Sixty-six OGs were differentially expressed under stress conditions, especially cold and osmotic stresses. Gene co-expression network and functional enrichment analyses suggested that sugarcane OGs are involved in several biological mechanisms, including stimulus response and defence mechanisms. These findings provide a valuable genomic resource for sugarcane researchers, especially those interested in selecting stress-responsive genes.

3.
Plant Cell Physiol ; 62(12): 1927-1943, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042158

RESUMO

Galactose oxidases (GalOxs) are well-known enzymes that have been identified in several fungal species and characterized using structural and enzymatic approaches. However, until very recently, almost no information on their biological functions was available. The Arabidopsis (Arabidopsis thaliana) gene ruby particles in mucilage (RUBY) encodes a putative plant GalOx that is required for pectin cross-linking through modification of galactose (Gal) side chains and promotes cell-cell adhesion between seed coat epidermal cells. RUBY is one member of a family of seven putative GalOxs encoded in the Arabidopsis genome. To examine the function(s) of GalOxs in plants, we studied the remaining six galactose oxidase-like (GOXL) proteins. Like RUBY, four of these proteins (GOXL1, GOXL3, GOXL5 and GOXL6) were found to localize primarily to the apoplast, while GOXL2 and GOXL4 were found primarily in the cytoplasm. Complementation and GalOx assay data suggested that GOXL1, GOXL3 and possibly GOXL6 have similar biochemical activity to RUBY, whereas GOXL5 only weakly complemented and GOXL2 and GOXL4 showed no activity. Members of this protein family separated into four distinct clades prior to the divergence of the angiosperms. There have been recent duplications in Brassicaceae resulting in two closely related pairs of genes that have either retained similarity in expression (GOXL1 and GOXL6) or show expression divergence (GOXL3 and RUBY). Mutant phenotypes were not detected when these genes were disrupted, but their expression patterns suggest that these proteins may function in tissues that require mechanical reinforcements in the absence of lignification.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Galactose Oxidase/genética , Expressão Gênica , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Galactose Oxidase/metabolismo , Filogenia , Alinhamento de Sequência
4.
Plant Genome ; 13(3): e20057, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33043636

RESUMO

Polyploidy has been a prevalent process during plant evolution and it has made a major impact on the structure and evolution of plant genomes. Many important crop plants are polyploid. There is considerable interest in expression patterns of duplicated genes in polyploids. Alternative splicing (AS) is a fundamental aspect of gene expression that produces multiple final transcript types from a single type of mRNAs. The effects of abiotic stress conditions on AS in polyploids has received little attention. We conducted a global transcriptome analysis of Brassica napus, an allotetraploid derived from B. rapa (AT ) and B. oleracea (CT ), by RNA-Seq of plants subjected to cold, heat, and drought stress treatments. Analyses of 27,360 pairs of duplicated genes revealed overall AT subgenome biases in gene expression and CT subgenome biases in the extent of alternative splicing under all three stress treatments. More genes increased in expression than decreased in response to the stresses. Negative correlations were found between expression levels and AS frequency for each type of AS. Cold stress produced the greatest changes in gene expression and AS. Cold-induced AS changes were more likely to be shared with those generated by drought than by heat stress. We used homeologs of FLC and CCA1 as case studies to show the dynamics of how duplicates in a polyploid respond to cold stress. Our results suggest that divergence in gene expression and AS patterns between duplicated genes may increase the flexibility of polyploids when responding to abiotic stressors.


Assuntos
Brassica napus , Processamento Alternativo , Brassica napus/genética , Secas , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Humanos , Poliploidia
5.
Plant Physiol ; 184(4): 1955-1968, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33051269

RESUMO

Alternative splicing (AS) occurs extensively in eukaryotes as an important mechanism for regulating transcriptome complexity and proteome diversity, but variation in the AS landscape in response to domestication and polyploidization in crops is unclear. Hexaploid wheat (AABBDD, Triticum aestivum) has undergone two separate allopolyploidization events, providing an ideal model for studying AS changes during domestication and polyploidization events. In this study, we performed high-throughput transcriptome sequencing of roots and leaves from wheat species with varied ploidies, including wild diploids (AbAb, Triticum boeoticum) and tetraploids (AABB, Triticum dicoccoides), domesticated diploids (AmAm, Triticum monococcum) and tetraploids (AABB, Triticum dicoccum), hexaploid wheat (AABBDD, T aestivum), as well as newly synthesized hexaploids together with their parents. Approximately 22.1% of genes exhibited AS, with the major AS type being intron retention. The number of AS events decreased after domestication in both diploids and tetraploids. Moreover, the frequency of AS occurrence tended to decrease after polyploidization, consistent with the functional sharing model that proposes AS and duplicated genes are complementary in regulating transcriptome plasticity in polyploid crops. In addition, the subgenomes exhibited biased AS responses to polyploidization, and ∼87.1% of homeologs showed AS partitioning in hexaploid wheat. Interestingly, substitution of the D-subgenome modified 42.8% of AS patterns of the A- and B-subgenomes, indicating subgenome interplay reprograms AS profiles at a genome-wide level, although the causal-consequence relationship requires further study. Conclusively, our study shows that AS variation occurs extensively after polyploidization and domestication in wheat species.


Assuntos
Evolução Biológica , Domesticação , Poliploidia , Splicing de RNA , Triticum/crescimento & desenvolvimento , Triticum/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Genótipo
6.
Plant J ; 103(2): 705-714, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32267570

RESUMO

The Arabidopsis MEKK1-MKK1/MKK2-MPK4 kinase cascade is monitored by the nucleotide-binding leucine-rich-repeat immune receptor SUMM2. Disruption of this kinase cascade leads to activation of SUMM2-mediated immune responses. MEKK2, a close paralog of MEKK1, is required for defense responses mediated by SUMM2, the molecular mechanism of which is unclear. In this study, we showed that MEKK2 serves as a negative regulator of MPK4. It binds to MPK4 to directly inhibit its phosphorylation by upstream MKKs. Activation of SUMM2-mediated defense responses induces the expression of MEKK2, which in turn blocks MPK4 phosphorylation to further amplify immune responses mediated by SUMM2. Intriguingly, MEKK2 locates in a tandem repeat consisting of MEKK1, MEKK2 and MEKK3, which was generated from a recent gene duplication event, suggesting that MEKK2 evolved from a MAPKKK to become a negative regulator of MAP kinases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MAP Quinase Quinase Quinase 2/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Proteínas de Transporte/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Sistema de Sinalização das MAP Quinases
7.
New Phytol ; 225(2): 1011-1022, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469915

RESUMO

Gene duplication is a prominent and recurrent process in plant genomes. Among the possible fates of duplicated genes, subfunctionalization refers to duplicates taking on different parts of the function or expression pattern of the ancestral gene. This partitioning could be accompanied by changes in subcellular localization of the protein products. When alternative splicing of gene products leads to protein products with different subcellular localizations, we propose that after gene duplication there will be partitioning of the alternatively spliced forms such that the products of each duplicate are localized to only one of the original locations, which we refer to as sublocalization. We identified the plastid ascorbate peroxidase (cpAPX) genes across angiosperms and analyzed their duplication history, alternative splicing, and subcellular targeting patterns to identify cases of sublocalization. We found angiosperms typically have one cpAPX gene that generates both thylakoidal APX (tAPX) and stromal APX (sAPX) through alternative splicing. We identified several independent lineage-specific sublocalization cases with specialized paralogues of tAPX and sAPX. We determined that the sublocalization happened through two types of sequence evolution patterns. Our findings suggest that the divergence through sublocalization is key to the retention of paralogous cpAPX genes in angiosperms.


Assuntos
Processamento Alternativo/genética , Duplicação Gênica , Genes Duplicados , Ascorbato Peroxidases/genética , Sequência de Bases , Evolução Molecular , Dosagem de Genes , Genes de Plantas , Filogenia , Plantas/genética , Plastídeos/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo
8.
J Fish Biol ; 93(1): 159-162, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29931703

RESUMO

What little is known about the seaward migration of Salmo salar smolt migration through standing waters indicates that it is both slow and results in high mortality rates, compared with riverine migration. This may be partly because smolts in lakes need to swim more actively and require more complex directional cues than they do in rivers. In this telemetry study of smolt migration through Loch Lomond, S. salar smolts made repeated movements in directions away from the outflowing river, which considerably increased migration time.


Assuntos
Migração Animal , Salmo salar , Animais , Lagos , Rios , Escócia , Telemetria
9.
Plant Physiol ; 174(2): 1192-1204, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28455403

RESUMO

Duplicated genes are a major contributor to genome evolution and phenotypic novelty. There are multiple possible evolutionary fates of duplicated genes. Here, we provide an example of concerted divergence of simultaneously duplicated genes whose products function in the same complex. We studied POLYCOMB REPRESSIVE COMPLEX2 (PRC2) in Brassicaceae. The VERNALIZATION (VRN)-PRC2 complex contains VRN2 and SWINGER (SWN), and both genes were duplicated during a whole-genome duplication to generate FERTILIZATION INDEPENDENT SEED2 (FIS2) and MEDEA (MEA), which function in the Brassicaceae-specific FIS-PRC2 complex that regulates seed development. We examined the expression of FIS2, MEA, and their paralogs, compared their cytosine and histone methylation patterns, and analyzed the sequence evolution of the genes. We found that FIS2 and MEA have reproductive-specific expression patterns that are correlated and derived from the broadly expressed VRN2 and SWN in outgroup species. In vegetative tissues of Arabidopsis (Arabidopsis thaliana), repressive methylation marks are enriched in FIS2 and MEA, whereas active marks are associated with their paralogs. We detected comparable accelerated amino acid substitution rates in FIS2 and MEA but not in their paralogs. We also show divergence patterns of the PRC2-associated VERNALIZATION5/VIN3-LIKE2 that are similar to FIS2 and MEA These lines of evidence indicate that FIS2 and MEA have diverged in concert, resulting in functional divergence of the PRC2 complexes in Brassicaceae. This type of concerted divergence is a previously unreported fate of duplicated genes. In addition, the Brassicaceae-specific FIS-PRC2 complex modified the regulatory pathways in female gametophyte and seed development.


Assuntos
Brassicaceae/genética , Duplicação Gênica , Variação Genética , Proteínas de Plantas/genética , Proteínas do Grupo Polycomb/genética , Substituição de Aminoácidos , Metilação de DNA/genética , Epigênese Genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Histonas/metabolismo , Especificidade de Órgãos/genética , Proteínas de Plantas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Domínios e Motivos de Interação entre Proteínas , Seleção Genética
10.
Plant Physiol ; 169(4): 2982-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26474639

RESUMO

Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Evolução Molecular , Redes Reguladoras de Genes , Genes Duplicados/genética , Sequências Reguladoras de Ácido Nucleico/genética , Variação Genética , Genoma de Planta/genética , Modelos Genéticos , Regiões Promotoras Genéticas/genética
11.
Water Sci Technol ; 72(1): 10-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114266

RESUMO

Comprehensive hydraulic analysis of sediment retention ponds is commonly achieved through interpretation of residence time distribution and derivation of indices associated with short-circuiting and mixing. However, the availability of various indices indicates the need for careful selection of the most appropriate indices. This study compares some of the commonly used hydraulic performance indices, together with a new short-circuiting index, τ5, for five different flow regimes in a model sediment retention pond. The results show that τ5 was the best measure for short-circuiting. Among the mixing indices, only the Morril index correctly represented the physical behaviour of the experiments. In addition, two hydraulic efficiency indices, λ and a moment index (MI) were assessed and showed a good correlation with the short-circuiting and mixing indices, but MI was more reproducible than λ. Based on these results, this study recommends using τ5, Morril index and MI for analysis of hydraulic performance in sediment retention ponds.


Assuntos
Lagoas/química , Eliminação de Resíduos Líquidos/métodos , Hidrodinâmica , Modelos Teóricos , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química
12.
Genome Biol Evol ; 7(3): 646-55, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25644246

RESUMO

Gene duplication provides large numbers of new genes that can lead to the evolution of new functions. Duplicated genes can diverge by changes in sequences, expression patterns, and functions. MicroRNAs play an important role in the regulation of gene expression in many eukaryotes. After duplication, two paralogs may diverge in their microRNA binding sites, which might impact their expression and function. Little is known about conservation and divergence of microRNA binding sites in duplicated genes in plants. We analyzed microRNA binding sites in duplicated genes in Arabidopsis thaliana and Brassica rapa. We found that duplicates are more often targeted by microRNAs than singletons. The vast majority of duplicated genes in A. thaliana with microRNA binding sites show divergence in those sites between paralogs. Analysis of microRNA binding sites in genes derived from the ancient whole-genome triplication in B. rapa also revealed extensive divergence. Paralog pairs with divergent microRNA binding sites show more divergence in expression patterns compared with paralog pairs with the same microRNA binding sites in Arabidopsis. Close to half of the cases of binding site divergence are caused by microRNAs that are specific to the Arabidopsis genus, indicating evolutionarily recent gain of binding sites after target gene duplication. We also show rapid evolution of microRNA binding sites in a jacalin gene family. Our analyses reveal a dynamic process of changes in microRNA binding sites after gene duplication in Arabidopsis and highlight the role of microRNA regulation in the divergence and contrasting evolutionary fates of duplicated genes.


Assuntos
Arabidopsis/genética , Brassica/genética , Evolução Molecular , Duplicação Gênica , Genes Duplicados , MicroRNAs/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Genes de Plantas
13.
Genetics ; 198(4): 1473-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25326238

RESUMO

Gene and genome duplication events have created a large number of new genes in plants that can diverge by evolving new expression profiles and functions (neofunctionalization) or dividing extant ones (subfunctionalization). Alternative splicing (AS) generates multiple types of mRNA from a single type of pre-mRNA by differential intron splicing. It can result in new protein isoforms or downregulation of gene expression by transcript decay. Using RNA-seq, we investigated the degree to which alternative splicing patterns are conserved between duplicated genes in Arabidopsis thaliana. Our results revealed that 30% of AS events in α-whole-genome duplicates and 33% of AS events in tandem duplicates are qualitatively conserved within leaf tissue. Loss of ancestral splice forms, as well as asymmetric gain of new splice forms, may account for this divergence. Conserved events had different frequencies, as only 31% of shared AS events in α-whole-genome duplicates and 41% of shared AS events in tandem duplicates had similar frequencies in both paralogs, indicating considerable quantitative divergence. Analysis of published RNA-seq data from nonsense-mediated decay (NMD) mutants indicated that 85% of α-whole-genome duplicates and 89% of tandem duplicates have diverged in their AS-induced NMD. Our results indicate that alternative splicing shows a high degree of divergence between paralogs such that qualitatively conserved alternative splicing events tend to have quantitative divergence. Divergence in AS patterns between duplicates may be a mechanism of regulating expression level divergence.


Assuntos
Processamento Alternativo , Arabidopsis/genética , Perfilação da Expressão Gênica , Genes Duplicados , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Degradação do RNAm Mediada por Códon sem Sentido , Fatores de Transcrição/genética , Transcriptoma
14.
Genome Biol Evol ; 6(9): 2501-15, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25193306

RESUMO

Gene duplications during eukaroytic evolution, by successive rounds of polyploidy and by smaller scale duplications, have provided an enormous reservoir of new genes for the evolution of new functions. Preservation of many duplicated genes can be ascribed to changes in sequences, expression patterns, and functions. Protein subcellular relocalization (protein targeting to a new location within the cell) is another way that duplicated genes can diverge. We studied subcellular relocalization of gene pairs duplicated during the evolution of the Brassicaceae including gene pairs from the alpha whole genome duplication that occurred at the base of the family. We analyzed experimental localization data from green fluorescent protein experiments for 128 duplicate pairs in Arabidopsis thaliana, revealing 19 pairs with subcellular relocalization. Many more of the duplicate pairs with relocalization than with the same localization showed an accelerated rate of amino acid sequence evolution in one duplicate, and one gene showed evidence for positive selection. We studied six duplicate gene pairs in more detail. We used gene family analysis with several pairs to infer which gene shows relocalization. We identified potential sequence mutations through comparative analysis that likely result in relocalization of two duplicated gene products. We show that four cases of relocalization have new expression patterns, compared with orthologs in outgroup species, including two with novel expression in pollen. This study provides insights into subcellular relocalization of evolutionarily recent gene duplicates and features of genes whose products have been relocalized.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Duplicação Gênica , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/classificação , Arabidopsis/genética , Proteínas de Arabidopsis/química , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Plantas/classificação , Plantas/genética , Pólen/genética , Pólen/metabolismo , Transporte Proteico , Alinhamento de Sequência
15.
Genome Biol Evol ; 6(7): 1830-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25115008

RESUMO

Eukaryotic genomes have large numbers of duplicated genes that can evolve new functions or expression patterns by changes in coding and regulatory sequences, referred to as neofunctionalization. In flowering plants, some duplicated genes are imprinted in the endosperm, where only one allele is expressed depending on its parental origin. We found that 125 imprinted genes in Arabidopsis arose from gene duplication events during the evolution of the Brassicales. Analyses of 46 gene pairs duplicated by an ancient whole-genome duplication (alpha WGD) indicated that many imprinted genes show an accelerated rate of amino acid changes compared with their paralogs. Analyses of microarray expression data from 63 organ types and developmental stages indicated that many imprinted genes have expression patterns restricted to flowers and/or seeds in contrast to their broadly expressed paralogs. Assays of expression in orthologs from outgroup species revealed that some imprinted genes have acquired an organ-specific expression pattern restricted to flowers and/or seeds. The changes in expression pattern and the accelerated sequence evolution in the imprinted genes suggest that some of them may have undergone neofunctionalization. The imprinted genes MPC, HOMEODOMAIN GLABROUS6 (HDG6), and HDG3 are particularly interesting cases that have different functions from their paralogs. This study indicates that a large number of imprinted genes in Arabidopsis are evolutionarily recent duplicates and that many of them show changes in expression profiles and accelerated sequence evolution. Acquisition of imprinting is a mode of duplicate gene divergence in plants that is more common than previously thought.


Assuntos
Arabidopsis/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Sequência de Aminoácidos , Análise em Microsséries , Dados de Sequência Molecular , Folhas de Planta , Raízes de Plantas , Caules de Planta , Reação em Cadeia da Polimerase , Transcriptoma
17.
Genome Biol Evol ; 5(7): 1309-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23677938

RESUMO

Hybridization is a prominent process among natural plant populations that can result in phenotypic novelty, heterosis, and changes in gene expression. The effects of intraspecific hybridization on F1 hybrid gene expression were investigated using parents from divergent, natural populations of Cirsium arvense, an invasive Compositae weed. Using an RNA-seq approach, the expression of 68,746 unigenes was quantified in parents and hybrids. The expression levels of 51% of transcripts differed between parents, a majority of which had less than 1.25× fold-changes. More unigenes had higher expression in the invasive parent (P1) than the noninvasive parent (P2). Of those that were divergently expressed between parents, 10% showed additive and 81% showed nonadditive (transgressive or dominant) modes of gene action in the hybrids. A majority of the dominant cases had P2-like expression patterns in the hybrids. Comparisons of allele-specific expression also enabled a survey of cis- and trans-regulatory effects. Cis- and trans-regulatory divergence was found at 70% and 68% of 62,281 informative single-nucleotide polymorphism sites, respectively. Of the 17% of sites exhibiting both cis- and trans-effects, a majority (70%) had antagonistic regulatory interactions (cis x trans); trans-divergence tended to drive higher expression of the P1 allele, whereas cis-divergence tended to increase P2 transcript abundance. Trans-effects correlated more highly than cis with parental expression divergence and accounted for a greater proportion of the regulatory divergence at sites with additive compared with nonadditive inheritance patterns. This study explores the nature of, and types of mechanisms underlying, expression changes that occur in upon intraspecific hybridization in natural populations.


Assuntos
Cirsium/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Hibridização Genética , Análise de Sequência de RNA , Alelos , Perfilação da Expressão Gênica , Padrões de Herança/genética , Polimorfismo de Nucleotídeo Único/genética
18.
New Phytol ; 199(1): 252-263, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23551259

RESUMO

Alternative splicing (AS) generates multiple types of mRNA from a single type of pre-mRNA by differential intron splicing. It can result in new protein isoforms or down-regulation of gene expression by transcript decay. The evolutionary conservation of AS events in plants is largely unexplored and only a small number of AS events have been identified as conserved between divergent species. We performed a large-scale analysis of cDNA data from Brassica and Arabidopsis to identify and further characterize conserved AS events. We identified 537 conserved AS events in 485 genes. Alternative donor and acceptor events are significantly overrepresented among conserved events, whereas intron retention and exon skipping events are underrepresented. Conserved AS events are significantly shorter, less likely to be in the 3'UTR, and they are enriched for genes whose products function in the chloroplast. AS modified a functional domain for about half of the genes with conserved events. We further characterized three genes with conserved AS events. This study identifies many AS events that are conserved between Brassica and Arabidopsis, revealing features of conserved AS events. Many of the conserved AS events may have important, but uncharacterized, functions.


Assuntos
Processamento Alternativo , Arabidopsis/genética , Brassica/genética , Evolução Molecular , Regiões 3' não Traduzidas , Cloroplastos/genética , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Precursores de RNA/genética , Alinhamento de Sequência
19.
Proc Natl Acad Sci U S A ; 110(8): 2898-903, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382190

RESUMO

The importance of gene gain through duplication has long been appreciated. In contrast, the importance of gene loss has only recently attracted attention. Indeed, studies in organisms ranging from plants to worms and humans suggest that duplication of some genes might be better tolerated than that of others. Here we have undertaken a large-scale study to investigate the existence of duplication-resistant genes in the sequenced genomes of 20 flowering plants. We demonstrate that there is a large set of genes that is convergently restored to single-copy status following multiple genome-wide and smaller scale duplication events. We rule out the possibility that such a pattern could be explained by random gene loss only and therefore propose that there is selection pressure to preserve such genes as singletons. This is further substantiated by the observation that angiosperm single-copy genes do not comprise a random fraction of the genome, but instead are often involved in essential housekeeping functions that are highly conserved across all eukaryotes. Furthermore, single-copy genes are generally expressed more highly and in more tissues than non-single-copy genes, and they exhibit higher sequence conservation. Finally, we propose different hypotheses to explain their resistance against duplication.


Assuntos
Deleção de Genes , Duplicação Gênica , Magnoliopsida/genética , Genes de Plantas
20.
Am J Bot ; 99(2): 209-18, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22058181

RESUMO

PREMISE OF STUDY: Weeds cause considerable environmental and economic damage. However, genomic characterization of weeds has lagged behind that of model plants and crop species. Here we describe the development of genomic tools and resources for 11 weeds from the Compositae family that will serve as a basis for subsequent population and comparative genomic analyses. Because hybridization has been suggested as a stimulus for the evolution of invasiveness, we also analyze these genomic data for evidence of hybridization. METHODS: We generated 22 expressed sequence tag (EST) libraries for the 11 targeted weeds using Sanger, 454, and Illumina sequencing, compared the coverage and quality of sequence assemblies, and developed NimbleGen microarrays for expression analyses in five taxa. When possible, we also compared the distributions of Ks values between orthologs of congeneric taxa to detect and quantify hybridization and introgression. RESULTS: Gene discovery was enhanced by sequencing from multiple tissues, normalization of cDNA libraries, and especially greater sequencing depth. However, assemblies from short sequence reads sometimes failed to resolve close paralogs. Substantial introgression was detected in Centaurea and Helianthus, but not in Ambrosia and Lactuca. CONCLUSIONS: Transcriptome sequencing using next-generation platforms has greatly reduced the cost of genomic studies of nonmodel organisms, and the ESTs and microarrays reported here will accelerate evolutionary and molecular investigations of Compositae weeds. Our study also shows how ortholog comparisons can be used to approximately estimate the genome-wide extent of introgression and to identify genes that have been exchanged between hybridizing taxa.


Assuntos
Asteraceae/genética , Etiquetas de Sequências Expressas , Genômica/métodos , Hibridização Genética , DNA Complementar/genética , Bases de Dados Genéticas , Evolução Molecular , Perfilação da Expressão Gênica , Biblioteca Gênica , Variação Genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...