Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1865(1): 149004, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699505

RESUMO

The plant light-harvesting pigment-protein complex LHCII is the major antenna sub-unit of PSII and is generally (though not universally) accepted to play a role in photoprotective energy dissipation under high light conditions, a process known Non-Photochemical Quenching (NPQ). The underlying mechanisms of energy trapping and dissipation within LHCII are still debated. Various models have been proposed for the underlying molecular detail of NPQ, but they are often based on different interpretations of very similar transient absorption measurements of isolated complexes. Here we present a simulated measurement of the fluorescence decay kinetics of quenched LHCII aggregates to determine whether this relatively simple measurement can discriminate between different potential NPQ mechanisms. We simulate not just the underlying physics (excitation, energy migration, quenching and singlet-singlet annihilation) but also the signal detection and typical experimental data analysis. Comparing this to a selection of published fluorescence decay kinetics we find that: (1) Different proposed quenching mechanisms produce noticeably different fluorescence kinetics even at low (annihilation free) excitation density, though the degree of difference is dependent on pulse width. (2) Measured decay kinetics are consistent with most LHCII trimers becoming relatively slow excitation quenchers. A small sub-population of very fast quenchers produces kinetics which do not resemble any observed measurement. (3) It is necessary to consider at least two distinct quenching mechanisms in order to accurately reproduce experimental kinetics, supporting the idea that NPQ is not a simple binary switch.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Tilacoides/metabolismo , Física
2.
J Phys Chem B ; 127(8): 1715-1727, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802586

RESUMO

Fluorescent probes are useful in biophysics research to assess the spatial distribution, mobility, and interactions of biomolecules. However, fluorophores can undergo "self-quenching" of their fluorescence intensity at high concentrations. A greater understanding of concentration-quenching effects is important for avoiding artifacts in fluorescence images and relevant to energy transfer processes in photosynthesis. Here, we show that an electrophoresis technique can be used to control the migration of charged fluorophores associated with supported lipid bilayers (SLBs) and that quenching effects can be quantified with fluorescence lifetime imaging microscopy (FLIM). Confined SLBs containing controlled quantities of lipid-linked Texas Red (TR) fluorophores were generated within 100 × 100 µm corral regions on glass substrates. Application of an electric field in-plane with the lipid bilayer induced the migration of negatively charged TR-lipid molecules toward the positive electrode and created a lateral concentration gradient across each corral. The self-quenching of TR was directly observed in FLIM images as a correlation of high concentrations of fluorophores to reductions in their fluorescence lifetime. By varying the initial concentration of TR fluorophores incorporated into the SLBs from 0.3% to 0.8% (mol/mol), the maximum concentration of fluorophores reached during electrophoresis could be modulated from 2% up to 7% (mol/mol), leading to the reduction of fluorescence lifetime down to 30% and quenching of the fluorescence intensity down to 10% of their original levels. As part of this work, we demonstrated a method for converting fluorescence intensity profiles into molecular concentration profiles by correcting for quenching effects. The calculated concentration profiles have a good fit to an exponential growth function, suggesting that TR-lipids can diffuse freely even at high concentrations. Overall, these findings prove that electrophoresis is effective at producing microscale concentration gradients of a molecule-of-interest and that FLIM is an excellent approach to interrogate dynamic changes to molecular interactions via their photophysical state.


Assuntos
Corantes Fluorescentes , Bicamadas Lipídicas , Microscopia de Fluorescência/métodos , Bicamadas Lipídicas/química , Membranas , Eletroforese
3.
J Photochem Photobiol B ; 237: 112585, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334507

RESUMO

The Light-Harvesting (LH) pigment-protein complexes found in photosynthetic organisms have the role of absorbing solar energy with high efficiency and transferring it to reaction centre complexes. LH complexes contain a suite of pigments that each absorb light at specific wavelengths, however, the natural combinations of pigments within any one protein complex do not cover the full range of solar radiation. Here, we provide an in-depth comparison of the relative effectiveness of five different organic "dye" molecules (Texas Red, ATTO, Cy7, DiI, DiR) for enhancing the absorption range of two different LH membrane protein complexes (the major LHCII from plants and LH2 from purple phototrophic bacteria). Proteoliposomes were self-assembled from defined mixtures of lipids, proteins and dye molecules and their optical properties were quantified by absorption and fluorescence spectroscopy. Both lipid-linked dyes and alternative lipophilic dyes were found to be effective excitation energy donors to LH protein complexes, without the need for direct chemical or generic modification of the proteins. The Förster theory parameters (e.g., spectral overlap) were compared between each donor-acceptor combination and found to be good predictors of an effective dye-protein combination. At the highest dye-to-protein ratios tested (over 20:1), the effective absorption strength integrated over the full spectral range was increased to ∼180% of its natural level for both LH complexes. Lipophilic dyes could be inserted into pre-formed membranes although their effectiveness was found to depend upon favourable physicochemical interactions. Finally, we demonstrated that these dyes can also be effective at increasing the spectral range of surface-supported models of photosynthetic membranes, using fluorescence microscopy. The results of this work provide insight into the utility of self-assembled lipid membranes and the great flexibility of LH complexes for interacting with different dyes.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Complexos de Proteínas Captadores de Luz/química , Tilacoides/metabolismo , Proteobactérias/metabolismo , Corantes/metabolismo
4.
Phys Chem Chem Phys ; 23(35): 19511-19524, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524278

RESUMO

Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Plantas/metabolismo , Clorofila/química , Cloroplastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Complexos de Proteínas Captadores de Luz/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Xantenos/química
5.
Small ; 17(14): e2006608, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33690933

RESUMO

Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results.


Assuntos
Tilacoides , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Complexos de Proteínas Captadores de Luz/metabolismo , Lipídeos , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
6.
Nanoscale ; 11(35): 16284-16292, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31465048

RESUMO

Bio-hybrid nanomaterials have great potential for combining the most desirable aspects of biomolecules and the contemporary concepts of nanotechnology to create highly efficient light-harvesting materials. Light-harvesting proteins are optimized to absorb and transfer solar energy with remarkable efficiency but have a spectral range that is limited by their natural pigment complement. Herein, we present the development of model membranes ("proteoliposomes") in which the absorption range of the membrane protein Light-Harvesting Complex II (LHCII) is effectively enhanced by the addition of lipid-tethered Texas Red (TR) chromophores. Energy transfer from TR to LHCII is observed with up to 94% efficiency and increased LHCII fluorescence of up to three-fold when excited in the region of lowest natural absorption. The new self-assembly procedure offers the modularity to control the concentrations incorporated of TR and LHCII, allowing energy transfer and fluorescence to be tuned. Fluorescence Lifetime Imaging Microscopy provides single-proteoliposome-level quantification of energy transfer efficiency and confirms that functionality is retained on surfaces. Designer proteoliposomes could act as a controllable light-harvesting nanomaterial and are a promising step in the development of bio-hybrid light-harvesting systems.


Assuntos
Fluorescência , Complexos de Proteínas Captadores de Luz/química , Proteolipídeos/química , Spinacia oleracea/química , Xantenos/química
7.
Biochim Biophys Acta Bioenerg ; 1859(10): 1075-1085, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29928860

RESUMO

Light-Harvesting Complex II (LHCII) is a chlorophyll-protein antenna complex that efficiently absorbs solar energy and transfers electronic excited states to photosystems I and II. Under excess light intensity LHCII can adopt a photoprotective state in which excitation energy is safely dissipated as heat, a process known as Non-Photochemical Quenching (NPQ). In vivo NPQ is triggered by combinatorial factors including transmembrane ΔpH, PsbS protein and LHCII-bound zeaxanthin, leading to dramatically shortened LHCII fluorescence lifetimes. In vitro, LHCII in detergent solution or in proteoliposomes can reversibly adopt an NPQ-like state, via manipulation of detergent/protein ratio, lipid/protein ratio, pH or pressure. Previous spectroscopic investigations revealed changes in exciton dynamics and protein conformation that accompany quenching, however, LHCII-LHCII interactions have not been extensively studied. Here, we correlated fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM) of trimeric LHCII adsorbed to mica substrates and manipulated the environment to cause varying degrees of quenching. AFM showed that LHCII self-assembled onto mica forming 2D-aggregates (25-150 nm width). FLIM determined that LHCII in these aggregates were in a quenched state, with much lower fluorescence lifetimes (~0.25 ns) compared to free LHCII in solution (2.2-3.9 ns). LHCII-LHCII interactions were disrupted by thylakoid lipids or phospholipids, leading to intermediate fluorescent lifetimes (0.6-0.9 ns). To our knowledge, this is the first in vitro correlation of nanoscale membrane imaging with LHCII quenching. Our findings suggest that lipids could play a key role in modulating the extent of LHCII-LHCII interactions within the thylakoid membrane and so the propensity for NPQ activation.

8.
Sci Rep ; 6: 39408, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000714

RESUMO

The fundamental biophysics of gliding microtubule (MT) motility by surface-tethered kinesin-1 motor proteins has been widely studied, as well as applied to capture and transport analytes in bioanalytical microdevices. In these systems, phenomena such as molecular wear and fracture into shorter MTs have been reported due the mechanical forces applied on the MT during transport. In the present work, we show that MTs can be split longitudinally into protofilament bundles (PFBs) by the work performed by surface-bound kinesin motors. We examine the properties of these PFBs using several techniques (e.g., fluorescence microscopy, SEM, AFM), and show that the PFBs continue to be mobile on the surface and display very high curvature compared to MT. Further, higher surface density of kinesin motors and shorter kinesin-surface tethers promote PFB formation, whereas modifying MT with GMPCPP or higher paclitaxel concentrations did not affect PFB formation.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Animais , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Fenômenos Mecânicos/efeitos dos fármacos , Microscopia de Fluorescência/métodos , Microtúbulos/efeitos dos fármacos , Paclitaxel/farmacologia , Ligação Proteica/fisiologia
9.
Biochim Biophys Acta ; 1857(6): 634-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27013332

RESUMO

In the purple phototrophic bacterium Rhodobacter sphaeroides, light harvesting LH2 complexes transfer absorbed solar energy to RC-LH1-PufX core complexes, which are mainly found in the dimeric state. Many other purple phototrophs have monomeric core complexes and the basis for requiring dimeric cores is not fully established, so we analysed strains of Rba. sphaeroides that contain either native dimeric core complexes or altered monomeric cores harbouring a deletion of the first 12 residues from the N-terminus of PufX, which retains the PufX polypeptide but removes the major determinant of core complex dimerization. Membranes were purified from strains with dimeric or monomeric cores, and with either high or low levels of the LH2 complex. Samples were interrogated with absorption, steady-state fluorescence, and picosecond time-resolved fluorescence kinetic spectroscopies to reveal their light-harvesting and energy trapping properties. We find that under saturating excitation light intensity the photosynthetic membranes containing LH2 and monomeric core complexes have fluorescence lifetimes nearly twice that of membranes with LH2 plus dimeric core complexes. This trend of increased lifetime is maintained with RCs in the open state as well, and for two different levels of LH2 content. Thus, energy trapping is more efficient when photosynthetic membranes of Rba. sphaeroides consist of RC-LH1-PufX dimers and LH2 complexes.


Assuntos
Cromatóforos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/metabolismo , Algoritmos , Cromatóforos Bacterianos/efeitos da radiação , Proteínas de Bactérias/química , Transferência de Energia/efeitos da radiação , Cinética , Luz , Complexos de Proteínas Captadores de Luz/química , Modelos Biológicos , Fotossíntese/efeitos da radiação , Multimerização Proteica/efeitos da radiação , Rhodobacter sphaeroides/efeitos da radiação , Espectrofotometria
10.
Sci Rep ; 5: 10331, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26015293

RESUMO

Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.


Assuntos
Bicamadas Lipídicas/química , Lipopolissacarídeos/química , Bicamadas Lipídicas/metabolismo , Lipopolissacarídeos/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Análise em Microsséries , Microscopia de Força Atômica , Microscopia Confocal , Fosfatidilcolinas/química
11.
Nano Lett ; 15(4): 2422-8, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25719733

RESUMO

We report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. This study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

12.
J Biol Chem ; 289(43): 29927-36, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25193660

RESUMO

In the purple phototrophic bacterium Rhodobacter sphaeroides, many protein complexes congregate within the membrane to form operational photosynthetic units consisting of arrays of light-harvesting LH2 complexes and monomeric and dimeric reaction center (RC)-light-harvesting 1 (LH1)-PufX "core" complexes. Each half of a dimer complex consists of a RC surrounded by 14 LH1 αß subunits, with two bacteriochlorophylls (Bchls) sandwiched between each αß pair of transmembrane helices. We used atomic force microscopy (AFM) to investigate the assembly of single molecules of the RC-LH1-PufX complex using membranes prepared from LH2-minus mutants. When the RC and PufX components were also absent, AFM revealed a series of LH1 variants where the repeating α(1)ß(1)(Bchl)2 units had formed rings of variable size, ellipses, and spirals and also arcs that could be assembly products. The spiral complexes occur when the LH1 ring has failed to close, and short arcs are suggestive of prematurely terminated LH1 complex assembly. In the absence of RCs, we occasionally observed captive proteins enclosed by the LH1 ring. When production of LH1 units was restricted by lowering the relative levels of the cognate pufBA transcript, we imaged a mixture of complete RC-LH1 core complexes, empty LH1 rings, and isolated RCs, leading us to conclude that once a RC associates with the first α1ß1(Bchl)2 subunit, cooperative associations between subsequent subunits and the RC tend to drive LH1 ring assembly to completion.


Assuntos
Proteínas de Bactérias/metabolismo , Imageamento Tridimensional , Complexos de Proteínas Captadores de Luz/metabolismo , Microscopia de Força Atômica/métodos , Rhodobacter sphaeroides/metabolismo , Detergentes/farmacologia , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Modelos Moleculares , Proteínas Mutantes/metabolismo , Subunidades Proteicas/metabolismo , Rhodobacter sphaeroides/efeitos dos fármacos , Ultracentrifugação
13.
Biophys J ; 106(11): 2395-407, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24896118

RESUMO

Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na(+) leads to the formation of 100-µm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca(2+) gives rise to 100-µm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions.


Assuntos
Bicamadas Lipídicas/química , Lipopolissacarídeos/farmacologia , Lipossomos/química , Cálcio/química , Cálcio/farmacologia , Membrana Celular/efeitos dos fármacos , Lipopolissacarídeos/química , Lipossomos/ultraestrutura , Microscopia de Força Atômica , Microscopia de Fluorescência , Sódio/química , Sódio/farmacologia
14.
Biochim Biophys Acta ; 1827(10): 1235-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23867748

RESUMO

Chlorosomes, the major antenna complexes in green sulphur bacteria, filamentous anoxygenic phototrophs, and phototrophic acidobacteria, are attached to the cytoplasmic side of the inner cell membrane and contain thousands of bacteriochlorophyll (BChl) molecules that harvest light and channel the energy to membrane-bound reaction centres. Chlorosomes from phototrophs representing three different phyla, Chloroflexus (Cfx.) aurantiacus, Chlorobaculum (Cba.) tepidum and the newly discovered "Candidatus (Ca.) Chloracidobacterium (Cab.) thermophilum" were analysed using PeakForce Tapping atomic force microscopy (PFT-AFM). Gentle PFT-AFM imaging in buffered solutions that maintained the chlorosomes in a near-native state revealed ellipsoids of variable size, with surface bumps and undulations that differ between individual chlorosomes. Cba. tepidum chlorosomes were the largest (133×57×36nm; 141,000nm(3) volume), compared with chlorosomes from Cfx. aurantiacus (120×44×30nm; 84,000nm(3)) and Ca. Cab. thermophilum (99×40×31nm; 65,000nm(3)). Reflecting the contributions of thousands of pigment-pigment stacking interactions to the stability of these supramolecular assemblies, analysis by nanomechanical mapping shows that chlorosomes are highly stable and that their integrity is disrupted only by very strong forces of 1000-2000pN. AFM topographs of Ca. Cab. thermophilum chlorosomes that had retained their attachment to the cytoplasmic membrane showed that this membrane dynamically changes shape and is composed of protrusions of up to 30nm wide and 6nm above the mica support, possibly representing different protein domains. Spectral imaging revealed significant heterogeneity in the fluorescence emission of individual chlorosomes, likely reflecting the variations in BChl c homolog composition and internal arrangements of the stacked BChls within each chlorosome.


Assuntos
Bacterioclorofilas/química , Estruturas da Membrana Celular/química , Chlorobium/classificação , Chlorobium/fisiologia , Citoplasma/metabolismo , Estruturas da Membrana Celular/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência
15.
Biochim Biophys Acta ; 1817(9): 1616-27, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659614

RESUMO

The model photosynthetic bacterium Rhodobacter sphaeroides uses a network of bacteriochlorophyll (BChl)-protein complexes embedded in spherical intracytoplasmic membranes (ICM) to collect and utilise solar energy. We studied the effects of high- and low-light growth conditions, where BChl levels increased approximately four-fold from 1.6×10(6) to 6.5×10(6) molecules per cell. Most of this extra pigment is accommodated in the proliferating ICM system, which increases from approximately 274 to 1468 vesicles per cell. Thus, 16×10(6)nm(2) of specialised membrane surface area is made available for harvesting and utilising solar energy compared to 3×10(6)nm(2) under high-light conditions. Membrane mapping using atomic force microscopy revealed closely packed dimeric and monomeric reaction centre-light harvesting 1-PufX (RC-LH1-PufX) complexes in high-light ICM with room only for small clusters of LH2, whereas extensive LH2-only domains form during adaptation to low light, with the LH2/RC ratio increasing three-fold. The number of upper pigmented band (UPB) sites where membrane invagination is initiated hardly varied; 704 (5.8×10(5) BChls/cell) and 829 (4.9×10(5) BChls/cell) UPB sites per cell were estimated under high- and low-light conditions, respectively. Thus, the lower ICM content in high-light cells is a consequence of fewer ICM invaginations reaching maturity. Taking into account the relatively poor LH2-to-LH1 energy transfer in UPB membranes it is likely that high-light cells are relatively inefficient at energy trapping, but can grow well enough without the need to fully develop their photosynthetic membranes from the relatively inefficient UPB to highly efficient mature ICM.


Assuntos
Membrana Celular/fisiologia , Rhodobacter sphaeroides/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/fisiologia , Proliferação de Células , Transferência de Energia , Luz , Complexos de Proteínas Captadores de Luz/fisiologia , Microscopia de Força Atômica , Rhodobacter sphaeroides/crescimento & desenvolvimento , Rhodobacter sphaeroides/efeitos da radiação
16.
Biochim Biophys Acta ; 1807(9): 1056-63, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21651888

RESUMO

Carotenoids play important roles in photosynthesis where they are involved in light-harvesting, in photo-protection and in the assembly and structural stability of light-harvesting and reaction centre complexes. In order to examine the effects of carotenoids on the oligomeric state of the reaction centre-light-harvesting 1 -PufX (RC-LH1-PufX) core complex of Rhodobacter sphaeroides two carotenoid-less mutants, TC70 and R-26, were studied. Detergent fractionation showed that in the absence of carotenoids LH2 complexes do not assemble, as expected, but also that core complexes are predominantly found as monomers, although levels of the PufX polypeptide appeared to be unaffected. Analysis of R-26 membranes by electron microscopy and atomic force microscopy reveals arrays of hexagonally packed monomeric RC-LH1-PufX complexes. Transfer of the crtB gene encoding phytoene synthase to TC70 and R-26 restores the normal synthesis of carotenoids demonstrating that the R-26 mutant of Rba. sphaeroides harbours a mutation in crtB, among its other defects. The transconjugant TC70 and R-26 strains containing crtB had regained their ability to assemble wild-type levels of dimeric RC-LH1-PufX core complexes and normal energy transfer pathways were restored, demonstrating that carotenoids are essential for the normal assembly and function of both the LH2 and RC-LH1-PufX complexes in this bacterial photosystem.


Assuntos
Alquil e Aril Transferases/metabolismo , Carotenoides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação , Rhodobacter sphaeroides/metabolismo , Alquil e Aril Transferases/genética , Western Blotting , Dimerização , Geranil-Geranildifosfato Geranil-Geraniltransferase , Complexos de Proteínas Captadores de Luz/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Rhodobacter sphaeroides/enzimologia
17.
Biochim Biophys Acta ; 1807(9): 1044-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21663730

RESUMO

In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre-light-harvesting 1-PufX (RC-LH1-PufX) 'core' complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX(-)). Lower rates of LH2 assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX(-) mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC-LH1-PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX(-) membranes, resulting in locally ordered clusters of monomeric RC-LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation.


Assuntos
Citoplasma/metabolismo , Membranas Intracelulares/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/fisiologia , Sequência de Bases , Primers do DNA , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
18.
Biochim Biophys Acta ; 1807(1): 95-107, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20937243

RESUMO

The PufX polypeptide is an integral component of some photosynthetic bacterial reaction center-light harvesting 1 (RC-LH1) core complexes. Many aspects of the structure of PufX are unresolved, including the conformation of its long membrane-spanning helix and whether C-terminal processing occurs. In the present report, NMR data recorded on the Rhodobacter sphaeroides PufX in a detergent micelle confirmed previous conclusions derived from equivalent data obtained in organic solvent, that the α-helix of PufX adopts a bent conformation that would allow the entire helix to reside in the membrane interior or at its surface. In support of this, it was found through the use of site-directed mutagenesis that increasing the size of a conserved glycine on the inside of the bend in the helix was not tolerated. Possible consequences of this bent helical structure were explored using a series of N-terminal deletions. The N-terminal sequence ADKTIFNDHLN on the cytoplasmic face of the membrane was found to be critical for the formation of dimers of the RC-LH1 complex. It was further shown that the C-terminus of PufX is processed at an early stage in the development of the photosynthetic membrane. A model in which two bent PufX polypeptides stabilise a dimeric RC-LH1 complex is presented, and it is proposed that the N-terminus of PufX from one half of the dimer engages in electrostatic interactions with charged residues on the cytoplasmic surface of the LH1α and ß polypeptides on the other half of the dimer.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Sequência Conservada , Dimerização , Membranas Intracelulares/enzimologia , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Espectroscopia de Ressonância Magnética/métodos , Micelas , Microscopia de Força Atômica/métodos , Modelos Moleculares , Dados de Sequência Molecular , Fotossíntese , Conformação Proteica , Rhodobacter sphaeroides/crescimento & desenvolvimento , Rhodobacter sphaeroides/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
19.
Mol Microbiol ; 76(4): 833-47, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20444085

RESUMO

The purple phototrophic bacteria synthesize an extensive system of intracytoplasmic membranes (ICM) in order to increase the surface area for absorbing and utilizing solar energy. Rhodobacter sphaeroides cells contain curved membrane invaginations. In order to study the biogenesis of ICM in this bacterium mature (ICM) and precursor (upper pigmented band - UPB) membranes were purified and compared at the single membrane level using electron, atomic force and fluorescence microscopy, revealing fundamental differences in their morphology, protein organization and function. Cryo-electron tomography demonstrates the complexity of the ICM of Rba. sphaeroides. Some ICM vesicles have no connection with other structures, others are found nearer to the cytoplasmic membrane (CM), often forming interconnected structures that retain a connection to the CM, and possibly having access to the periplasmic space. Near-spherical single invaginations are also observed, still attached to the CM by a 'neck'. Small indents of the CM are also seen, which are proposed to give rise to the UPB precursor membranes upon cell disruption. 'Free-living' ICM vesicles, which possess all the machinery for converting light energy into ATP, can be regarded as bacterial membrane organelles.


Assuntos
Membrana Celular/ultraestrutura , Rhodobacter sphaeroides/ultraestrutura , Proteínas de Bactérias/química , Microscopia Crioeletrônica , Complexos de Proteínas Captadores de Luz/química , Microscopia de Força Atômica , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...