Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 166, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337015

RESUMO

The mussel industry faces challenges such as low and inconsistent levels of larvae settlement and poor-quality spat, leading to variable production. However, mussel farming remains a vital sustainable and environmentally responsible method for producing protein, fostering ecological responsibility in the aquaculture sector. We investigate the population connectivity and larval dispersion of blue mussels (Mytilus edulis) in Scottish waters, as a case study, using a multidisciplinary approach that combined genetic data and particle modelling. This research allows us to develop a thorough understanding of blue mussel population dynamics in mid-latitude fjord regions, to infer gene-flow patterns, and to estimate population divergence. Our findings reveal a primary south-to-north particle transport direction and the presence of five genetic clusters. We discover a significant and continuous genetic material exchange among populations within the study area, with our biophysical model's outcomes aligning with our genetic observations. Additionally, our model reveals a robust connection between the southwest coast and the rest of the west coast. This study will guide the preservation of mussel farming regions, ensuring sustainable populations that contribute to marine ecosystem health and resilience.


Assuntos
Mytilus edulis , Animais , Mytilus edulis/genética , Estuários , Ecossistema , Aquicultura , Larva/genética
2.
Ecology ; 94(12): 2732-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24597220

RESUMO

Ecologists are faced with the challenge of how to scale up from the activities of individual plants and animals to the macroscopic dynamics of populations and communities. It is especially difficult to do this in communities of plants where the fate of individuals depends on their immediate neighbors rather than an average over a larger region. This has meant that algorithmic, agent-based models are typically used to understand their dynamics, although certain macroscopic models have been developed for neighbor-dependent, birth death processes. Here we present a macroscopic model that, for the first time, incorporates explicit, gradual, neighbor-dependent plant growth, as a third fundamental process of plant communities. The model is derived from a stochastic, agent-based model, and describes the dynamics of the first and second spatial moments of a multispecies, spatially structured plant community with neighbor-dependent growth, births, and deaths. A simple example shows that strong neighborhood space-filling during tree growth in an even-aged stand of Scots pine is well captured by the spatial-moment model. The space-filling has a spatial signature consistent with that observed in several field studies of forests. Small neighborhoods of interaction, nonuniform spacing of trees, and asymmetric competition all contribute to the buildup of a wide range of tree sizes with some large dominant individuals and many smaller ones.


Assuntos
Ecossistema , Pinus sylvestris/crescimento & desenvolvimento , Pinus sylvestris/fisiologia , Demografia , Modelos Biológicos , Dinâmica Populacional , Processos Estocásticos
3.
Proc Biol Sci ; 274(1628): 3039-47, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17925276

RESUMO

Tree species differ from one another in, and display trade-offs among, a wide range of attributes, including canopy and understorey growth and mortality rates, fecundity, height and crown allometry, and crown transmissivity. But how does this variation affect the outcome of interspecific competition and hence community structure? We derive criteria for the outcome of competition among tree species competing for light, given their allometric and life-history parameters. These criteria are defined in terms of a new simple whole life-cycle measure of performance, which provides a simple way to organize and understand the many ways in which species differ. The general case, in which all parameters can differ between species, can produce coexistence, founder control or competitive exclusion: thus, competition for light need not be hierarchical as implied by R* theory. The special case in which species differ only in crown transmissivity produces neutral dynamics. The special case in which species differ in all parameters except crown transmissivity gives hierarchical competition, where the equivalent of R* is Z*, the height at which trees enter the canopy in an equilibrium monoculture.


Assuntos
Luz , Modelos Biológicos , Árvores/anatomia & histologia , Dinâmica Populacional , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...