Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4020, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369593

RESUMO

Over-consumption of fructose in adults and children has been linked to increased risk of non-alcoholic fatty liver disease (NAFLD). Recent studies have highlighted the effect of fructose on liver inflammation, fibrosis, and immune cell activation. However, little work summarizes the direct impact of fructose on macrophage infiltration, phenotype, and function within the liver. We demonstrate that chronic fructose diet decreased Kupffer cell populations while increasing transitioning monocytes. In addition, fructose increased fibrotic gene expression of collagen 1 alpha 1 (Col1a1) and tissue metallopeptidase inhibitor 1 (Timp1) as well as inflammatory gene expression of tumor necrosis factor alpha (Tnfa) and expression of transmembrane glycoprotein NMB (Gpnmb) in liver tissue compared to glucose and control diets. Single cell RNA sequencing (scRNAseq) revealed fructose elevated expression of matrix metallopeptidase 12 (Mmp12), interleukin 1 receptor antagonist (Il1rn), and radical S-adenosyl methionine domain (Rsad2) in liver and hepatic macrophages. In vitro studies using IMKC and J774.1 cells demonstrated decreased viability when exposed to fructose. Additionally, fructose increased Gpnmb, Tnfa, Mmp12, Il1rn, and Rsad2 in unpolarized IMKC. By mass spectrometry, C13 fructose tracing detected fructose metabolites in glycolysis and the pentose phosphate pathway (PPP). Inhibition of the PPP further increased fructose induced Il6, Gpnmb, Mmp12, Il1rn, and Rsad2 in nonpolarized IMKC. Taken together, fructose decreases cell viability while upregulating resolution and anti-inflammatory associated genes in Kupffer cells.


Assuntos
Células de Kupffer , Hepatopatia Gordurosa não Alcoólica , Criança , Humanos , Células de Kupffer/metabolismo , Frutose/metabolismo , Via de Pentose Fosfato , Metaloproteinase 12 da Matriz/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fibrose , Fenótipo
2.
Front Immunol ; 14: 1302006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274832

RESUMO

Background & aims: Activated CD8+ T cells are elevated in Nonalcoholic steatohepatitis (NASH) and are important for driving fibrosis and inflammation. Despite this, mechanisms of CD8+ T cell activation in NASH are largely limited. Specific CD8+ T cell subsets may become activated through metabolic signals or cytokines. However, studies in NASH have not evaluated the impact of antigen presentation or the involvement of specific antigens. Therefore, we determined if activated CD8+ T cells are dependent on MHC class I expression in NASH to regulate fibrosis and inflammation. Methods: We used H2Kb and H2Db deficient (MHC I KO), Kb transgenic mice, and myeloid cell Kb deficient mice (LysM Kb KO) to investigate how MHC class I impacts CD8+ T cell function and NASH. Flow cytometry, gene expression, and histology were used to examine hepatic inflammation and fibrosis. The hepatic class I immunopeptidome was evaluated by mass spectrometry. Results: In NASH, MHC class I isoform H2Kb was upregulated in myeloid cells. MHC I KO demonstrated protective effects against NASH-induced inflammation and fibrosis. Kb mice exhibited increased fibrosis in the absence of H2Db while LysM Kb KO mice showed protection against fibrosis but not inflammation. H2Kb restricted peptides identified a unique NASH peptide Ncf2 capable of CD8+ T cell activation in vitro. The Ncf2 peptide was not detected during fibrosis resolution. Conclusion: These results suggest that activated hepatic CD8+ T cells are dependent on myeloid cell MHC class I expression in diet induced NASH to promote inflammation and fibrosis. Additionally, our studies suggest a role of NADPH oxidase in the production of Ncf2 peptide generation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Linfócitos T CD8-Positivos , Inflamação , Células Mieloides/metabolismo , Camundongos Transgênicos , Fibrose , Citocinas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-34619367

RESUMO

Eicosapentaenoic acid (EPA) ethyl esters are of interest given their clinical approval for lowering circulating triglycerides and cardiometabolic disease risk. EPA ethyl esters prevent metabolic complications driven by a high fat diet in male mice; however, their impact on female mice is less studied. Herein, we first investigated how EPA influences the metabolic profile of female C57BL/6J mice consuming a high fat diet. EPA lowered murine fat mass accumulation, potentially through increased biosynthesis of 8-hydroxyeicosapentaenoic acid (HEPE), as revealed by mass spectrometry and cell culture studies. EPA also reversed the effects of a high fat diet on circulating levels of insulin, glucose, and select inflammatory/metabolic markers. Next, we studied if the improved metabolic profile of obese mice consuming EPA was associated with a reduction in the abundance of key gut Gram-negative bacteria that contribute toward impaired glucose metabolism. Using fecal 16S-ribosomal RNA gene sequencing, we found EPA restructured the gut microbiota in a time-dependent manner but did not lower the levels of key Gram-negative bacteria. Interestingly, EPA robustly increased the abundance of the Gram-negative Akkermansia muciniphila, which controls glucose homeostasis. Finally, predictive functional profiling of microbial communities revealed EPA-mediated reversal of high fat diet-associated changes in a wide range of genes related to pathways such as Th-17 cell differentiation and PI3K-Akt signaling. Collectively, these results show that EPA ethyl esters prevent some of the deleterious effects of a high fat diet in female mice, which may be mediated mechanistically through 8-HEPE and the upregulation of intestinal Akkermansia muciniphila.


Assuntos
Ácido Eicosapentaenoico/farmacologia , Microbioma Gastrointestinal/genética , Ácidos Hidroxieicosatetraenoicos/biossíntese , Akkermansia/genética , Akkermansia/crescimento & desenvolvimento , Animais , Fatores de Risco Cardiometabólico , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Ácido Eicosapentaenoico/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/sangue , Masculino , Espectrometria de Massas , Camundongos , Camundongos Obesos/genética , Camundongos Obesos/microbiologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Ribossômico 16S/genética , Caracteres Sexuais , Células Th17/metabolismo , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...