Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Treat Options Oncol ; 25(6): 719-751, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696033

RESUMO

OPINION STATEMENT: The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Metilação de DNA , Leucemia Mieloide Aguda , Terapia de Alvo Molecular , Mutação , Inibidores de Proteínas Quinases , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/terapia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Epigênese Genética , Epigenoma , Sequências de Repetição em Tandem , Biomarcadores Tumorais , Prognóstico , Gerenciamento Clínico
2.
Onco Targets Ther ; 15: 1449-1478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36474506

RESUMO

FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The presence of FLT3-ITD (internal tandem duplication, 20-25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5-10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i's will be discussed together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In addition, strategies beyond FLT3i's including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summarized to highlight potential alternatives in FLT3-mutated AML therapy.

3.
Cytotechnology ; 74(2): 271-281, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35464162

RESUMO

Treatment of FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) AML is restricted due to toxicity, drug resistance and relapse eventhough targeted therapies are clinically available. Resveratrol with its multi-targeted nature is a promising chemopreventive remaining limitedly studied in FLT3-ITD AML regarding to ceramide metabolism. Here, its cytotoxic, cytostatic and apoptotic effects are investigated in combination with serine palmitoyltransferase (SPT), the first enzyme of de novo pathway of ceramide production, inhibitor myriocin on MOLM-13 and MV4-11 cells. We assessed dose-dependent cell viability, flow cytometric cell death and cell cycle profiles of resveratrol in combination with myriocin by MTT assay, annexin-V/PI staining and PI staining respectively. Resveratrol's dose-dependent effect on SPT protein expression was also checked by western blot. Resveratrol decreased cell viability in a dose- dependent manner whereas myriocin did not affect cell proliferation effectively in both cell lines after 48h treatments. Although resveratrol induced both apoptosis and a significant S phase arrest in MV4-11 cells, it triggered apoptosis and non-significant S phase accumulation in MOLM-13 cells. Co-administrations reduced cell viability. Increased cytotoxic effect of co-treatments was further proved mechanistically through induction of apoptosis via phosphatidylserine relocalization. The cell cycle alteration in co-treatment was significant with an S phase arrest in MV4-11 cells, however, it was not effective on cell cycle progression of MOLM-13 cells. Resveratrol also increased SPT expression. Overall, modulation of SPT together with resveratrol might be the possible explanation for resveratrol's action. It could be an integrative medicine for FLT3-ITD AML after investigating its detailed mechanism of action in relation to de novo pathway of ceramide production.

4.
Med Oncol ; 39(3): 35, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35059910

RESUMO

Resveratrol possesses well-defined anti-carcinogenic activities. However, how resveratrol exerts its anti-leukemic actions by modulating anti-apoptotic ceramide catabolism enzymes, mainly sphingosine kinase (SK-1) and glucosylceramide synthase (GCS), in FLT3-ITD AML remains unclear. Resveratrol, SKI II (SK inhibitor) and PDMP (GCS inhibitor) were evaluated alone or in combinations for their effect on cell proliferation (MTT assay), apoptosis (annexin V-FITC/PI staining by flow cytometry) and cell cycle progression (PI staining by flow cytometry) in MOLM-13 and MV4-11 cells. The combination indexes (CIs) were calculated based on cell proliferation data using CompuSyn software. Caspase-3 and PARP activation, changes in SK-1 and GCS levels by resveratrol alone or PARP cleavage in co-treatments were determined by western blot. Resveratrol and inhibitors alone inhibited cell proliferation in a dose- and time-dependent manner. Resveratrol downregulated SK-1 and GCS expression in both cell lines. It induced apoptosis by phosphatidylserine (PS) exposure together with caspase-3 and PARP cleavage and arrested the cell cycle slightly at the S phase. Co-administrations intensified resveratrol's effect by inhibiting cell proliferation synergistically (A CI of < 1) or additively (A CI 1.0-1.1) and inducing apoptosis via PS relocalization and PARP cleavage. Resveratrol plus SKI II did not affect cell cycle progression significantly, however, resveratrol plus PDMP blocked cycle progression at G0/G1 and S phases for MOLM-13 cells and MV4-11 cells, respectively. Overall, resveratrol may inhibit FLT3-ITD AML cell proliferation by inhibiting ceramide catabolism and be evaluated as a chemopreventive after detailed analysis of the crosstalk between resveratrol and ceramide catabolism pathway.


Assuntos
Proliferação de Células/efeitos dos fármacos , Leucemia Mieloide Aguda/genética , Resveratrol/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ceramidas/metabolismo , Glucosiltransferases , Humanos , Leucemia Mieloide Aguda/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Tirosina Quinase 3 Semelhante a fms/metabolismo
5.
Nutr Cancer ; 74(7): 2508-2521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34806508

RESUMO

Targeting the key enzymes of sphingolipid metabolism including serine palmitoyltransferase (SPT), sphingosine kinase (SK) and glucosylceramide synthase (GCS) has a therapeutic importance. However, sphingolipid metabolism-mediated anti-leukemic actions of resveratrol in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) remain unknown. Therefore, we explored potential mechanisms behind resveratrol-mediated cytotoxicity in SD1 and SUP-B15 Ph + ALL cells in the context of sphingolipid metabolism and apoptosis induction. The anti-proliferative and apoptotic effects of resveratrol alone and in combination with SPT inhibitor (myriocin), SK inhibitor (SKI II), GCS inhibitor (PDMP) were determined by MTT cell proliferation assay and flow cytometry, respectively. The effects of resveratrol on PARP cleavage, SPT, SK and GCS protein levels were investigated by Western blot. Resveratrol inhibited proliferation and triggered apoptosis via PARP activation and externalization of phosphatidylserine (PS). Resveratrol increased the expression of SPT whereas it downregulated SK and GCS. Resveratrol's combinations with SKI II and PDMP intensified its anti-leukemic activity by increasing the relocalization of PS while its combination with myriocin suppressed apoptosis. Therefore, resveratrol inhibited cell proliferation and induced apoptosis through modulating SK, GCS and SPT expression, which may be considered as novel biomarkers of resveratrol-induced cytotoxicity in Ph + ALL.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptose , Linhagem Celular Tumoral , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Resveratrol/farmacologia , Esfingolipídeos
6.
PeerJ ; 8: e9369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547891

RESUMO

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression found in more than 200 diverse organisms. Although it is still not fully established if RNA viruses could generate miRNAs, there are examples of miRNA like sequences from RNA viruses with regulatory functions. In the case of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there are several mechanisms that would make miRNAs impact the virus, like interfering with viral replication, translation and even modulating the host expression. In this study, we performed a machine learning based miRNA prediction analysis for the SARS-CoV-2 genome to identify miRNA-like hairpins and searched for potential miRNA-based interactions between the viral miRNAs and human genes and human miRNAs and viral genes. Overall, 950 hairpin structured sequences were extracted from the virus genome and based on the prediction results, 29 of them could be precursor miRNAs. Targeting analysis showed that 30 viral mature miRNA-like sequences could target 1,367 different human genes. PANTHER gene function analysis results indicated that viral derived miRNA candidates could target various human genes involved in crucial cellular processes including transcription, metabolism, defense system and several signaling pathways such as Wnt and EGFR signalings. Protein class-based grouping of targeted human genes showed that host transcription might be one of the main targets of the virus since 96 genes involved in transcriptional processes were potential targets of predicted viral miRNAs. For instance, basal transcription machinery elements including several components of human mediator complex (MED1, MED9, MED12L, MED19), basal transcription factors such as TAF4, TAF5, TAF7L and site-specific transcription factors such as STAT1 were found to be targeted. In addition, many known human miRNAs appeared to be able to target viral genes involved in viral life cycle such as S, M, N, E proteins and ORF1ab, ORF3a, ORF8, ORF7a and ORF10. Considering the fact that miRNA-based therapies have been paid attention, based on the findings of this study, comprehending mode of actions of miRNAs and their possible roles during SARS-CoV-2 infections could create new opportunities for the development and improvement of new therapeutics.

7.
Turk J Biol ; 42(5): 382-391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30930622

RESUMO

The aim of this study was to introduce a minimally invasive procedure for mesenchymal stem cell (MSC) transfer into the intact periodontal ligament (PDL) of the molar teeth in rats. Ten 12-week-old Wistar albino rats were used for this preliminary study. MSCs were obtained from bones of two animals and were labeled with green fluorescent protein (GFP). Four animals were randomly selected for MSC injection, while 4 animals served as a control group. Samples were prepared for histological analysis, Cox-2 mRNA expression polymerase chain reaction analysis, and fluorescent microscopy evaluation. The number of total cells, number of osteoclastic cells, and Cox-2 mRNA expression levels of the periodontal tissue of teeth were calculated. The number of total cells was increased with MSC injections in PDL significantly (P < 0.001). The number of osteoclastic cells and Cox-2 mRNA expression were found to be similar for the two groups. GFP-labeled MSCs were observed with an expected luminescence on the smear samples of the PDL with transferred MSCs. The results of this preliminary study demonstrate successful evidence of transferring MSCs to intact PDL in a nonsurgical way and offer a minimally invasive procedure for transfer of MSCs to periodontal tissues.

8.
Crit Rev Biotechnol ; 37(2): 163-176, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26767547

RESUMO

Flow cytometry is a sophisticated instrument measuring multiple physical characteristics of a single cell such as size and granularity simultaneously as the cell flows in suspension through a measuring device. Its working depends on the light scattering features of the cells under investigation, which may be derived from dyes or monoclonal antibodies targeting either extracellular molecules located on the surface or intracellular molecules inside the cell. This approach makes flow cytometry a powerful tool for detailed analysis of complex populations in a short period of time. This review covers the general principles and selected applications of flow cytometry such as immunophenotyping of peripheral blood cells, analysis of apoptosis and detection of cytokines. Additionally, this report provides a basic understanding of flow cytometry technology essential for all users as well as the methods used to analyze and interpret the data. Moreover, recent progresses in flow cytometry have been discussed in order to give an opinion about the future importance of this technology.


Assuntos
Citometria de Fluxo , Fluorescência , Humanos , Eletricidade Estática
9.
Eur Arch Otorhinolaryngol ; 274(1): 197-207, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27380271

RESUMO

Previous studies showed that bone marrow-derived mesenchymal stem cells (BMSCs) could ameliorate a variety of immune-mediated and inflammatory diseases due to their immunomodulatory and anti-inflammatory effects. In this study, we developed a mouse model of ovalbumin (OVA) induced allergic inflammation in the upper airways and evaluated the effects of the intraperitoneal administration of BMSCs on allergic inflammation. Twenty-five BALB/c mice were divided into five groups; group I (control group), group II (sensitized and challenged with OVA and treated with saline-placebo group), group III (sensitized and challenged with OVA and treated with 1 × 106 BMSCs), group IV (sensitized and challenged with OVA and treated with 2 × 106 BMSCs), and group V (sensitized and challenged with phosphate buffered saline (PBS) and treated with 1 × 106 BMSCs). Histopathological features (number of goblet cells, eosinophils and mast cells, basement membrane, epithelium thickness, and subepithelial smooth muscle thickness) of the upper and lower airways and BMSCs migration to nasal and lung tissue were evaluated using light and confocal microscopes. Levels of cytokines in the nasal lavage fluid and lung tissue supernatants were measured using enzyme-linked immunosorbent assay (ELISA). Confocal microscopic analysis showed that there was no significant amount of BMSCs in the nasal and lung tissues of group V. However, significant amount of BMSCs were observed in group III and IV. In OVA-induced AR groups (group II, III, and IV), histopathological findings of chronic asthma, such as elevated subepithelial smooth muscle thickness, epithelium thickness, and number of goblet and mast cells, were determined. Furthermore, the number of nasal goblet and eosinophil cells, histopathological findings of chronic asthma, and IL-4, IL-5, IL-13, and NO levels was significantly lower in both BMSCs-treated groups compared to the placebo group. Our findings indicated that histopathological findings of chronic asthma were also observed in mice upon AR induction. BMSCs migrated to the nasal and lung tissues following intraperitoneal delivery and ameliorated to the airway remodeling and airway inflammation both in the upper and lower airways via the inhibition of T helper (Th) 2 immune response in the murine model of AR.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Rinite Alérgica/terapia , Alérgenos/efeitos adversos , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Ovalbumina/efeitos adversos , Distribuição Aleatória , Rinite Alérgica/etiologia , Rinite Alérgica/imunologia , Rinite Alérgica/patologia
10.
Eur J Orthod ; 39(3): 235-242, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733487

RESUMO

Aim: The aim of this study is to evaluate and compare therapeutic effects of mesenchymal stem cell (MSCs) and osteoprotegerin (OPG) gene transfer applications on inhibition and/or repair of orthodontically induced inflammatory root resorption (OIIRR). Materials and methods: Thirty Wistar rats were divided into four groups as untreated group (negative control), treated with orthodontic appliance group (positive control), MSCs injection group, and OPG transfected MSCs [gene therapy (GT) group]. About 100g of orthodontic force was applied to upper first molar teeth of rats for 14 days. MSCs and transfected MSC injections were performed at 1st, 6th, and 11th days to the MSC and GT group rats. At the end of experiment, upper first molar teeth were prepared for genetical, scanning electron microscopy (SEM), fluorescent microscopy, and haematoxylin eosin-tartrate resistant acid phosphatase staining histological analyses. Number of total cells, number of osteoclastic cells, number of resorption lacunae, resorption area ratio, SEM resorption ratio, OPG, RANKL, Cox-2 gene expression levels at the periodontal ligament (PDL) were calculated. Paired t-test, Kruskal-Wallis, and chi-square tests were performed. Results: Transferred MSCs showed marked fluorescence in PDL. The results revealed that number of osteoclastic cells, resorption lacunae, resorption area ratio, RANKL, and Cox-2 were reduced after single MSC injections significantly (P < 0.05). GT group showed the lowest number of osteoclastic cells (P < 0.01), number of resorption lacunae, resorption area ratio, and highest OPG expression (P < 0.001). Conclusions: Taken together all these results, MSCs and GT showed marked inhibition and/or repair effects on OIIRR during orthodontic treatment on rats.


Assuntos
Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Osteoprotegerina/genética , Reabsorção da Raiz/terapia , Técnicas de Movimentação Dentária/efeitos adversos , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/patologia , Reabsorção Óssea/terapia , Técnicas de Transferência de Genes , Masculino , Microscopia Eletrônica , Dente Molar/ultraestrutura , Osteoclastos/patologia , Osteoprotegerina/metabolismo , Ligamento Periodontal/metabolismo , Ratos , Ratos Wistar , Reabsorção da Raiz/etiologia , Reabsorção da Raiz/patologia , Técnicas de Movimentação Dentária/métodos
11.
Curr Pharm Biotechnol ; 17(14): 1213-1221, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604355

RESUMO

Cell viability is defined as the number of healthy cells in a sample and proliferation of cells is a vital indicator for understanding the mechanisms in action of certain genes, proteins and pathways involved cell survival or death after exposing to toxic agents. Generally, methods used to determine viability are also common for the detection of cell proliferation. Cell cytotoxicity and proliferation assays are generally used for drug screening to detect whether the test molecules have effects on cell proliferation or display direct cytotoxic effects. Regardless of the type of cell-based assay being used, it is important to know how many viable cells are remaining at the end of the experiment. There are a variety of assay methods based on various cell functions such as enzyme activity, cell membrane permeability, cell adherence, ATP production, co-enzyme production, and nucleotide uptake activity. These methods could be basically classified into different categories: (I) dye exclusion methods such as trypan blue dye exclusion assay, (II) methods based on metabolic activity, (III) ATP assay, (IV) sulforhodamine B assay, (V) protease viability marker assay, (VI) clonogenic cell survival assay, (VII) DNA synthesis cell proliferation assays and (V) raman micro-spectroscopy. In order to choose the optimal viability assay, the cell type, applied culture conditions, and the specific questions being asked should be considered in detail. This particular review aims to provide an overview of common cell proliferation and cytotoxicity assays together with their own advantages and disadvantages, their methodologies, comparisons and intended purposes.


Assuntos
Proliferação de Células/efeitos dos fármacos , Bioensaio , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos
12.
Tumour Biol ; 37(7): 8471-86, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27059734

RESUMO

As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Humanos , Transdução de Sinais
13.
Tumour Biol ; 37(5): 5781-95, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26408178

RESUMO

Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confirmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Flavonoides/farmacologia , Hesperidina/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Flavonóis , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Células K562/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo
14.
Tumour Biol ; 36(11): 8973-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26081618

RESUMO

Fisetin and hesperetin, flavonoids from various plants, have several pharmaceutical activities including antioxidative, anti-inflammatory, and anticancer effects. However, studies elucidating the role and the mechanism(s) of action of fisetin and hesperetin in acute promyelocytic leukemia are absent. In this study, we investigated the mechanism of the antiproliferative and apoptotic actions exerted by fisetin and hesperetin on human HL60 acute promyelocytic leukemia cells. The viability of HL60 cells was evaluated using the MTT assay, apoptosis by annexin V/propidium iodide (PI) staining and cell cycle distribution using flow cytometry, and changes in caspase-3 enzyme activity and mitochondrial transmembrane potential. Moreover, we performed whole-genome microarray gene expression analysis to reveal genes affected by fisetin and hesperetin that can be important for developing of future targeted therapy. Based on data obtained from microarray analysis, we also described biological networks modulated after fisetin and hesperetin treatment by KEGG and IPA analysis. Fisetin and hesperetin treatment showed a concentration- and time-dependent inhibition of proliferation and induced G2/M arrest for both agents and G0/G1 arrest for hesperetin at only the highest concentrations. There was a disruption of mitochondrial membrane potential together with increased caspase-3 activity. Furthermore, fisetin- and hesperetin-triggered apoptosis was confirmed by annexin V/PI analysis. The microarray gene profiling analysis revealed some important biological pathways including mitogen-activated protein kinases (MAPK) and inhibitor of DNA binding (ID) signaling pathways altered by fisetin and hesperetin treatment as well as gave a list of genes modulated ≥2-fold involved in cell proliferation, cell division, and apoptosis. Altogether, data suggested that fisetin and hesperetin have anticancer properties and deserve further investigation.


Assuntos
Flavonoides/administração & dosagem , Hesperidina/administração & dosagem , Leucemia Promielocítica Aguda/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Apoptose , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonóis , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...