Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Drug Res Rev ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37921214

RESUMO

BACKGROUND: Patents and exclusive rights on reference biologics contribute to the emergence of biosimilars. Regulatory bodies, such as the Food and Drug Administration (FDA), World Health Organization (WHO), and EMA (European Medicines Agency) for assessing clinical safety, effectiveness, and consequences between biosimilars and reference medications, have established guidelines. Since generic small molecules from reference can be easily swapped, biosimilars cannot be used interchangeably and may not always indicate interchangeability due to highly restrictive properties. It can be replaced with a reference without the healthcare provider's help under the interchangeability context. OBJECTIVE: The purpose of our study is to analyze and compare evidence-based clinical safety, therapeutic potential, and importance (outcomes) of several biosimilars with their references along with clinical uses in chronic diseases. METHODS: Through a comprehensive systemic literature review of more than 100 articles involving medicinally important drugs whose bio-similarity works optimally, safety-efficacy parameters have been analyzed. Analysis of biosimilar usage, approval, and safety-efficacy aspects are majorly focused upon herein in this review. RESULTS: From this systemic review, it can be stated that the majority of biosimilars are clinically and statistically equivalent to their originators. As biosimilars have good safety-efficacy aspects with lower prices, their utilization can be more encouraged, which was already done by the FDA with the establishment of a public online database entitled "Purple Book," which includes all information regarding biological drugs. CONCLUSION: To conclude, we suggest widespread use of high-grade biosimilars in clinical practice, maybe via changing, exchanging, or switching, with appropriate clinical monitoring and pharmacovigilance to improve patient accessibility to modern medicines, as it provides similar efficacy and safety parameters across all the accumulated clinical trials and studies.

2.
J Funct Biomater ; 12(4)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34698184

RESUMO

Polymers have always played a critical role in the development of novel drug delivery systems by providing the sustained, controlled and targeted release of both hydrophobic and hydrophilic drugs. Among the different polymers, polyamides or poly(amino acid)s exhibit distinct features such as good biocompatibility, slow degradability and flexible physicochemical modification. The degradation rates of poly(amino acid)s are influenced by the hydrophilicity of the amino acids that make up the polymer. Poly(amino acid)s are extensively used in the formulation of chemotherapeutics to achieve selective delivery for an appropriate duration of time in order to lessen the drug-related side effects and increase the anti-tumor efficacy. This review highlights various poly(amino acid) polymers used in drug delivery along with new developments in their utility. A thorough discussion on anticancer agents incorporated into poly(amino acid) micellar systems that are under clinical evaluation is included.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...