Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(4): 112365, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37018075

RESUMO

Stem cell transplantation presents a potentially curative strategy for genetic disorders of skeletal muscle, but this approach is limited by the deleterious effects of cell expansion in vitro and consequent poor engraftment efficiency. In an effort to overcome this limitation, we sought to identify molecular signals that enhance the myogenic activity of cultured muscle progenitors. Here, we report the development and application of a cross-species small-molecule screening platform employing zebrafish and mice, which enables rapid, direct evaluation of the effects of chemical compounds on the engraftment of transplanted muscle precursor cells. Using this system, we screened a library of bioactive lipids to discriminate those that could increase myogenic engraftment in vivo in zebrafish and mice. This effort identified two lipids, lysophosphatidic acid and niflumic acid, both linked to the activation of intracellular calcium-ion flux, which showed conserved, dose-dependent, and synergistic effects in promoting muscle engraftment across these vertebrate species.


Assuntos
Células Satélites de Músculo Esquelético , Peixe-Zebra , Camundongos , Animais , Músculo Esquelético/fisiologia , Transplante de Células-Tronco , Lipídeos/farmacologia , Diferenciação Celular , Desenvolvimento Muscular
2.
PLoS One ; 17(11): e0278302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445925

RESUMO

The zebrafish (Danio rerio) is among the most widely used model animals in scientific research. Historically, these fish have been reared in the laboratory using simple methods developed by home aquarists. For laboratories with high demand for breeding and generation turn-over, however, there has been a shift away from this approach towards one that leverages techniques, tools, and feeds from commercial aquaculture to help accelerate growth rates and decrease generation times. While these advances have improved efficiency, the effects of feeding zebrafish diets that are designed to grow disparately related cold-water fish species to market size quickly are not well-understood. To explore the impacts that intensive feeding protocols may have on this species, groups of zebrafish larvae from two different wild-type lines were stocked into treatment tanks at a standard density of 10 fish per liter and were administered either a "high" or "low" food diet for a maximum of 63 days. During their growth phase, the "high" food diet group received at least 8x more rotifers and at least 2x more Artemia than the "low" food diet group. Growth, survival, and reproductive performance (fecundity and viability) were measured in these fish and in their offspring. We found that fish that were fed more grew more rapidly and were able to reproduce earlier than fish that were fed less, but they were also more likely to produce higher proportions of non-viable embryos.


Assuntos
Laboratórios , Peixe-Zebra , Animais , Reprodução , Fertilidade , Larva
3.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353901

RESUMO

Dyskeratosis congenita (DC) is a rare inherited bone marrow failure and cancer predisposition syndrome caused by mutations in telomerase or telomeric proteins. Here, we report that zebrafish telomerase RNA (terc) binds to specific DNA sequences of master myeloid genes and controls their expression by recruiting RNA Polymerase II (Pol II). Zebrafish terc harboring the CR4-CR5 domain mutation found in DC patients hardly interacted with Pol II and failed to regulate myeloid gene expression in vivo and to increase their transcription rates in vitro. Similarly, TERC regulated myeloid gene expression and Pol II promoter occupancy in human myeloid progenitor cells. Strikingly, induced pluripotent stem cells derived from DC patients with a TERC mutation in the CR4-CR5 domain showed impaired myelopoiesis, while those with mutated telomerase catalytic subunit differentiated normally. Our findings show that TERC acts as a transcription factor, revealing a target for therapeutic intervention in DC patients.


Assuntos
Disceratose Congênita/genética , Mielopoese/fisiologia , RNA Polimerase II/genética , RNA/metabolismo , Telomerase/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Células Cultivadas , Disceratose Congênita/patologia , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Larva/genética , Mutação , Mielopoese/genética , Regiões Promotoras Genéticas , Domínios Proteicos , RNA/genética , RNA Polimerase II/metabolismo , Telomerase/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Science ; 372(6543): 716-721, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33986176

RESUMO

Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage.


Assuntos
Eritropoese , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Peixe-Zebra/metabolismo , Animais , Ciclo do Ácido Cítrico , Metilação de DNA , Di-Hidro-Orotato Desidrogenase , Transporte de Elétrons , Embrião não Mamífero/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Histonas/metabolismo , Leflunomida/farmacologia , Redes e Vias Metabólicas , Metilação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Consumo de Oxigênio , Fatores de Transcrição/genética , Ubiquinona/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Nat Cell Biol ; 22(4): 372-379, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231306

RESUMO

The availability of nucleotides has a direct impact on transcription. The inhibition of dihydroorotate dehydrogenase (DHODH) with leflunomide impacts nucleotide pools by reducing pyrimidine levels. Leflunomide abrogates the effective transcription elongation of genes required for neural crest development and melanoma growth in vivo1. To define the mechanism of action, we undertook an in vivo chemical suppressor screen for restoration of neural crest after leflunomide treatment. Surprisingly, we found that alterations in progesterone and progesterone receptor (Pgr) signalling strongly suppressed leflunomide-mediated neural crest effects in zebrafish. In addition, progesterone bypasses the transcriptional elongation block resulting from Paf complex deficiency, rescuing neural crest defects in ctr9 morphant and paf1(alnz24) mutant embryos. Using proteomics, we found that Pgr binds the RNA helicase protein Ddx21. ddx21-deficient zebrafish show resistance to leflunomide-induced stress. At a molecular level, nucleotide depletion reduced the chromatin occupancy of DDX21 in human A375 melanoma cells. Nucleotide supplementation reversed the gene expression signature and DDX21 occupancy changes prompted by leflunomide. Together, our results show that DDX21 acts as a sensor and mediator of transcription during nucleotide stress.


Assuntos
RNA Helicases DEAD-box/genética , Melanócitos/metabolismo , Crista Neural/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Receptores de Progesterona/genética , Proteínas de Peixe-Zebra/genética , Animais , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo , Di-Hidro-Orotato Desidrogenase , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Leflunomida/farmacologia , Melanócitos/efeitos dos fármacos , Melanócitos/patologia , Crista Neural/efeitos dos fármacos , Crista Neural/crescimento & desenvolvimento , Nucleotídeos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Progesterona/metabolismo , Ligação Proteica , Receptores de Progesterona/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética , Elongação da Transcrição Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
J Clin Invest ; 130(5): 2252-2269, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32202514

RESUMO

Prenatal alcohol exposure (PAE) affects at least 10% of newborns globally and leads to the development of fetal alcohol spectrum disorders (FASDs). Despite its high incidence, there is no consensus on the implications of PAE on metabolic disease risk in adults. Here, we describe a cohort of adults with FASDs that had an increased incidence of metabolic abnormalities, including type 2 diabetes, low HDL, high triglycerides, and female-specific overweight and obesity. Using a zebrafish model for PAE, we performed population studies to elucidate the metabolic disease seen in the clinical cohort. Embryonic alcohol exposure (EAE) in male zebrafish increased the propensity for diet-induced obesity and fasting hyperglycemia in adulthood. We identified several consequences of EAE that may contribute to these phenotypes, including a reduction in adult locomotor activity, alterations in visceral adipose tissue and hepatic development, and persistent diet-responsive transcriptional changes. Taken together, our findings define metabolic vulnerabilities due to EAE and provide evidence that behavioral changes and primary organ dysfunction contribute to resultant metabolic abnormalities.


Assuntos
Diabetes Mellitus Tipo 2 , Transtornos do Espectro Alcoólico Fetal , Obesidade , Efeitos Tardios da Exposição Pré-Natal , Adulto , Animais , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/patologia , Humanos , Recém-Nascido , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Sistema de Registros , Peixe-Zebra
7.
Chem Res Toxicol ; 33(1): 95-118, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31625720

RESUMO

Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.


Assuntos
Descoberta de Drogas , Modelos Animais , Testes de Toxicidade/métodos , Peixe-Zebra , Alternativas ao Uso de Animais , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Embrião não Mamífero
8.
Zebrafish ; 13(3): 226-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26978703

RESUMO

Light-dark cycles mimicking natural settings in a zebrafish facility are crucial for maintaining fish with an entrained circadian clock making them an ideal vertebrate model to study such rhythms. However, failure to provide optimal conditions to include complete darkness can lead to a disturbed circadian pacemaker affecting physiology and behavior in zebrafish. To meet building code requirements, the aquatics facility in use was outfitted with EXIT signs emitting a constant light. To determine if light radiating from the EXIT sign has an effect on zebrafish embryo production, 100 fish (1:1 m/f ratio) were split and housed at 10 fish/L. Half were housed directly in front of the EXIT sign, whereas the other half (control) were housed under a true 14-h light-10-h dark cycle. Reproductive success was evaluated by recording fecundity and viability from 10 weekly matings under two light colors: red (640 nm) and green (560 nm). On average the control group spawned twice as many embryos compared to those housed in front of a red EXIT sign, whereas green EXIT sign showed no difference. This suggests the importance of providing a complete dark environment within the night cycle and a recommendation toward dim green EXIT signs to avoid a decline in reproductive performance.


Assuntos
Comportamento Animal , Cor , Abrigo para Animais , Reprodução/efeitos da radiação , Peixe-Zebra/fisiologia , Animais , Relógios Circadianos , Ritmo Circadiano
9.
Nat Cell Biol ; 17(8): 994-1003, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26214132

RESUMO

The use of human pluripotent stem cells for in vitro disease modelling and clinical applications requires protocols that convert these cells into relevant adult cell types. Here, we report the rapid and efficient differentiation of human pluripotent stem cells into vascular endothelial and smooth muscle cells. We found that GSK3 inhibition and BMP4 treatment rapidly committed pluripotent cells to a mesodermal fate and subsequent exposure to VEGF-A or PDGF-BB resulted in the differentiation of either endothelial or vascular smooth muscle cells, respectively. Both protocols produced mature cells with efficiencies exceeding 80% within six days. On purification to 99% via surface markers, endothelial cells maintained their identity, as assessed by marker gene expression, and showed relevant in vitro and in vivo functionality. Global transcriptional and metabolomic analyses confirmed that the cells closely resembled their in vivo counterparts. Our results suggest that these cells could be used to faithfully model human disease.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células Endoteliais/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Animais , Becaplermina , Biomarcadores/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/transplante , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/transplante , Metabolômica/métodos , Camundongos Endogâmicos NOD , Camundongos SCID , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/transplante , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/transplante , Neovascularização Fisiológica , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Fatores de Tempo , Transcrição Gênica , Transfecção , Fator A de Crescimento do Endotélio Vascular/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
10.
Lab Anim (NY) ; 41(6): 158-65, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22614091

RESUMO

The zebrafish and the medaka are both important model organisms in biomedical research. Both species are frequently characterized as having a generation time of approximately 2-4 months, but the precise onset of sexual maturity and the variability of reproductive success with age have not been previously examined. The authors studied reproduction in replicate groups of wild-type zebrafish (strain AB) and medakas (strain Cab) that were maintained together in the same aquaculture system. Length, weight and survival of the fish were measured and recorded once per week. Reproductive success and viability of offspring were also evaluated. Both zebrafish and medakas began producing viable embryos within 60 d post-fertilization. These findings show that it is possible to successfully maintain populations of both species within the same research infrastructure without compromising reproductive success or embryo viability.


Assuntos
Pesqueiros/métodos , Oryzias/fisiologia , Reprodução , Peixe-Zebra/fisiologia , Animais , Cruzamento , Feminino , Abrigo para Animais , Masculino , Oryzias/crescimento & desenvolvimento , Maturidade Sexual , Peixe-Zebra/crescimento & desenvolvimento
11.
PLoS One ; 6(6): e21715, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738776

RESUMO

The zebrafish is an excellent genetic and developmental model system used to study biology and disease. While the zebrafish model is associated with high fecundity, its reproductive potential has not been completely realized by scientists. One major issue is that embryo collection is inefficient. Here, we have developed an innovative breeding vessel designed to stimulate the natural reproductive behavior of the fish. This novel apparatus allows us to collect large numbers of developmentally synchronized embryos in brief and defined windows of time, and with minimal investments in labor and space. To demonstrate the efficacy of this approach, we placed three separate groups (n = 180) of fish in the vessel and allowed them to spawn for 10-minute intervals. During these trials, which were repeated three times, the fish produced 8600±917, 8400±794, and 6800±1997 embryos, respectively. This level of embryo production is nearly twice what we were able to achieve when using conventional crossing equipment with some of the same fish, and it required significantly less room and time to set up and break down. This system overcomes major space and labor restrictions inherent in spawning equipment currently used in the field, and will greatly accelerate efforts to improve the scale and throughput of experiments.


Assuntos
Embrião não Mamífero , Peixe-Zebra/embriologia , Animais
12.
FEMS Microbiol Ecol ; 74(3): 655-68, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20955196

RESUMO

Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 104 cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems.


Assuntos
Compostos de Metilmercúrio/metabolismo , Sphagnopsida/microbiologia , Bactérias Redutoras de Enxofre/metabolismo , Áreas Alagadas , Ácidos , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Água Doce/química , Água Doce/microbiologia , Metilação , New York , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Árvores
13.
Zebrafish ; 7(3): 289-95, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20936984

RESUMO

Promoting high rates of growth and survival can be a major challenge in zebrafish culture, especially during the first-feeding stage. Here we describe a new rearing technique in which zebrafish larvae are polycultured in static tanks with Type "L" saltwater rotifers (Brachionus plicatilis) for the first 5 days of feeding (days 5-9 postfertilization). To demonstrate the effectiveness of this technique, we conducted rearing trials using fish from two different strains: AB and nacre. Growth, survival, water quality, and rotifer density were assayed daily through the polyculture phase (days 5-9), and during the transition to standard rearing conditions (days 10-12). After that point, once the fish were fully integrated onto recirculating systems, parameters were measured once per week out to day 30. In all trials, the fish displayed high rates of growth and survival throughout the three phases (polyculture, transition, and recirculating flow), indicating that this method may be employed during the critical first-feeding stage to help improve rearing performance in zebrafish facilities. Additionally, water quality parameters observed during the polyculture phase of the trials reveal that early zebrafish larvae are much more tolerant of elevated levels of ammonia and salinity than previously believed.


Assuntos
Ração Animal , Criação de Animais Domésticos/métodos , Aquicultura/métodos , Peixe-Zebra/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Rotíferos
14.
Environ Sci Technol ; 38(16): 4285-92, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15382854

RESUMO

Speciation of Hg and conversion to methyl-Hg were evaluated in mine wastes, sediments, and water collected from the Almadén District, Spain, the world's largest Hg producing region. Our data for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from the Almadén area. Concentrations of Hg and methyl-Hg in mine waste, sediment, and water from Almadén are among the highestfound at Hg mines worldwide. Mine wastes from Almadén contain highly elevated Hg concentrations, ranging from 160 to 34,000 microg/g, and methyl-Hg varies from <0.20 to 3100 ng/g. Isotopic tracer methods indicate that mine wastes at one site (Almadenejos) exhibit unusually high rates of Hg-methylation, which correspond with mine wastes containing the highest methyl-Hg concentrations. Streamwater collected near the Almadén mine is also contaminated, containing Hg as high as 13,000 ng/L and methyl-Hg as high as 30 ng/L; corresponding stream sediments contain Hg concentrations as high as 2300 microg/g and methyl-Hg concentrations as high as 82 ng/g. Several streamwaters contain Hg concentrations in excess of the 1000 ng/L World Health Organization (WHO) drinking water standard. Methyl-Hg formation and degradation was rapid in mines wastes and stream sediments demonstrating the dynamic nature of Hg cycling. These data indicate substantial downstream transport of Hg from the Almadén mine and significant conversion to methyl-Hg in the surface environment.


Assuntos
Mercúrio/química , Mercúrio/metabolismo , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/metabolismo , Sedimentos Geológicos/microbiologia , Humanos , Compostos de Metilmercúrio/química , Mineração , Medição de Risco , Rios , Espanha , Eliminação de Resíduos Líquidos , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...