Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447038

RESUMO

The Chinese fir Cunninghamia lanceolata (Lamb.) Hook. is an important timber conifer species in China. Much has been studied about Chinese fir, but the distribution of non-structural carbohydrates (NSCs) among different organs (needles, branch, stem, and roots) under drought stress remains poorly understood. In this study, we used one-year-old C. lanceolata plantlets to evaluate the effects of simulated drought under four water regimes, i.e., adequate water or control, light drought, moderate drought, and severe drought stress corresponding to 80%, 60%, 50%, and 40%, respectively of soil field maximum capacity on various NSCs in the needles, branch, stem and roots. The degree and duration of drought stress had significant effects on fructose, glucose, sucrose, soluble sugar, starch, and NSC content in various organs (p < 0.05). Fructose content increased in stem xylem, stem phloem, and leaves. Glucose and sucrose content declined in stem and branch xylem under light drought stress and moderate drought stress, and increased under severe drought stress conditions. Soluble sugars content declined, and starch content increased in leaf and branch phloem, but the latter could not compensate for soluble sugar consumption in the whole plant, and therefore, total NSCs decreased. Correlation analysis showed that a significant positive correlation existed in the soluble sugar content between leaves and roots, and between xylem and phloem in the stems and branches. Chinese fir appears to have different NSCs distribution strategies in response to drought stress, viz., allocating more soluble sugars to fine roots and increasing starch content in the needles, as well as ensuring osmosis to prevent xylem embolism. Our study may broaden the understanding of the various mechanisms that Chinese fir and other plants have to enhance their tolerance to drought stress.

2.
Plants (Basel) ; 12(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299119

RESUMO

Mineral accumulation in plants under drought stress is essential for drought tolerance. The distribution, survival, and growth of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), an evergreen conifer, can be affected by climate change, particularly seasonal precipitation and drought. Hence, we designed a drought pot experiment, using 1-year-old Chinese fir plantlets, to evaluate drought effects under simulated mild drought, moderate drought, and severe drought, which corresponds to 60%, 50%, and 40% of soil field maximum moisture capacity, respectively. A treatment of 80% of soil field maximum moisture capacity was used as control. Effects of drought stress on mineral uptake, accumulation, and distribution in Chinese fir organs were determined under different drought stress regimes for 0-45 days. Severe drought stress significantly increased phosphorous (P) and potassium (K) uptake at 15, 30 and 45 days, respectively, within fine (diameter < 2 mm), moderate (diameter 2-5 mm), and large (diameter 5-10 mm) roots. Drought stress decreased magnesium (Mg) and manganese (Mn) uptake by fine roots and increased iron (Fe) uptake in fine and moderate roots but decreased Fe uptake in large roots. Severe drought stress increased P, K, calcium (Ca), Fe, sodium (Na), and aluminum (Al) accumulation in leaves after 45 days and increased Mg and Mn accumulation after 15 days. In stems, severe drought stress increased P, K, Ca, Fe, and Al in the phloem, and P, K, Mg, Na, and Al in the xylem. In branches, P, K, Ca, Fe, and Al concentrations increased in the phloem, and P, Mg, and Mn concentrations increased in the xylem under severe drought stress. Taken together, plants develop strategies to alleviate the adverse effects of drought stress, such as promoting the accumulation of P and K in most organs, regulating minerals concentration in the phloem and xylem, to prevent the occurrence of xylem embolism. The important roles of minerals in response to drought stress should be further evaluated.

3.
Sci Rep ; 10(1): 7509, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32372028

RESUMO

Water and nitrogen stresses are major constraints for agricultural and forest productivity. Although the effects of water scarcity or nitrogen stress on plant growth, physiology, and yield have been widely studied, few studies have assessed the combined effects of both stresses. In the present study, we investigated the effects of different nitrogen forms (NO3-N, NH4+-N, and a combination of NO3-N + NH4+-N) on antioxidant enzyme activity, osmotic regulatory substances, and nitrogen assimilation in Chinese fir (Cunninghamia lanceolata) plantlets under drought stress (induced by 10% polyethylene glycol). We found that different N ionic forms had different effects on drought-stressed plantlets. Nitrogen supply greatly increased the activities of superoxide dismutase (SOD), peroxidase (POD) and polyphenol oxidase (PPO) when plantlets were exposed to water stress. The malondialdehyde (MDA) contents significantly decreased under the NH4+ + water stress treatment. The proline (Pr) contents significantly increased in both the NO3-N and NH4+-N + water stress treatment. The nitrate reductase (NR) increased by 7.1% in the NO3- + water stress treatment, and the glutamine synthetase (GS), and the glutamate synthase (GOGAT) activity increased in all the nitrogen + water stress treatments. These results suggested that nitrogen supply could alleviate the adverse effects of drought stress on plants by enhancing antioxidant defense and improving nitrogen assimilation, while the effects on plant tolerance to drought stress varied with nitrogen ionic forms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...