Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e22619, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046175

RESUMO

Four hundred tubers of four genotypes, two brown and two black tiger nuts were subjected to Ethyl Methanesulfonate (EMS) and Colchicine treatments at concentrations of 0 %, 0.1 %, 0.25 %, 0.5 % and 1.0 % for 24 h. Each genotype had twenty tubers treated with each of the five different concentrations and were planted using Complete Randomized Design (CRD) in a greenhouse. Quantitative data was collected and LD50 and RD50 were analysed using Excell 2016 and Genstat 11.2. A general decreasing trend in percentage germination and plant height was observed with increasing concentrations of mutagens applied. An EMS treatment had LD50 and RD50 values of 0.97 % and 1.49 % for black and 0.63 % and 1.63 % for brown genotypes. Similarly, the percentage colchicine treatment had LD50 and RD50 values of 1.65 % and 19.51 % concentrations for black and 0.91 % and 1.71 % concentrations for brown genotypes.

2.
Front Plant Sci ; 11: 444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431718

RESUMO

Cowpeas provide food and income for many small-holder farmers in Africa. Cowpea grains contain substantial quantities of protein, carbohydrates, vitamins, and fiber. In areas where subsistence farming is practiced, cowpea's protein is cheaper than that obtained from other sources such as fish, meat, poultry or dairy products and combines well with cereal grains in diets. However, long-cooking times, typical of many grain legumes, is a major limitation to the utilization of cowpeas especially among the low-income and growing middle-income population of Africa. Long periods of cooking cowpeas lead to loss of nutrients, loss of useful time and increased greenhouse gas emission through increased burning of firewood. Fast-cooking cowpeas has the potential to deliver highly nutritious food to the hungry within shorter periods, encourage less use of firewood, improve gender equity, increase the consumption of cowpeas, trigger an increase in demand for cowpeas and thus incentivize cowpea production by smallholder farmers in Sub-Saharan Africa. In this study, the inheritance of storage-induced cooking time in cowpeas was investigated. Two sets of bi-parental crosses were conducted involving three cowpea genotypes: CRI-11(1)-1, C9P(B) and TVu7687. Generation means from six generations were used to determine the phenotypic and genotypic variances and coefficients of variation. Broad and narrow sense heritabilities and genetic advance percentage of mean were estimated. Generation mean analysis showed that additive, dominant, additive-additive, additive-dominant, and dominant-dominant gene actions were significant (p < 0.001). Fast-cooking trait was dominant over the long-cooking trait. Broad sense heritability for crosses C9P(B) × CRI-11(1)-1 and TVu7687 × CRI-11(1)-1 were 0.94 and 0.99 respectively while narrow sense heritabilities were 0.84 and 0.88 respectively. Genetic advances were 27.09 and 40.40 respectively. High narrow-sense heritabilities and moderate genetic advance for the fast-cooking trait indicated the presence of additive genes in the trait and the possibility of introgressing the trait into farmer-preferred varieties using conventional selection methods. However, due to significant epistatic gene effects observed, effective selection for fast-cooking trait would be appropriate at advanced generations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...