Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(20): 9935-9943, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38690802

RESUMO

Nano/micromotors outperform Brownian motion due to their self-propulsive capabilities and hold promise as carriers for drug delivery across biological barriers such as the extracellular matrix. This study employs poly(2-(diethylamino)ethyl methacrylate) polymer brushes to enhance the collagenase-loading capacity of silica particle-based motors with the aim to systematically investigate the impact of gelatine viscosity, motors' size, and morphology on their propulsion velocity. Notably, 500 nm and 1 µm motors achieve similar speeds as high as ∼15 µm s-1 in stiff gelatine-based hydrogels when triggered with calcium. Taken together, our findings highlight the potential of collagenase-based motors for navigating the extracellular matrix, positioning them as promising candidates for efficient drug delivery.


Assuntos
Colagenases , Gelatina , Hidrogéis , Hidrogéis/química , Gelatina/química , Colagenases/metabolismo , Colagenases/química , Dióxido de Silício/química , Viscosidade , Cálcio/química , Cálcio/metabolismo
2.
Macromol Biosci ; 23(8): e2200528, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36971346

RESUMO

The immobilization of enzymes on solid supports is an important challenge in biotechnology and biomedicine. In contrast to other methods, enzyme deposition in polymer brushes offers the benefit of high protein loading that preserves enzymatic activity in part due to the hydrated 3D environment that is available within the brush structure. The authors equipped planar and colloidal silica surfaces with poly(2-(diethylamino)ethyl methacrylate)-based brushes to immobilize Thermoplasma acidophilum histidine ammonia lyase, and analyzed the amount and activity of the immobilized enzyme. The poly(2-(diethylamino)ethyl methacrylate) brushes are attached to the solid silica supports either via a "grafting-to" or a "grafting-from" method. It is found that the grafting-from method results in higher amounts of deposited polymer and, consequently, higher amounts of Thermoplasma acidophilum histidine ammonia lyase. All polymer brush-modified surfaces show preserved catalytic activity of the deposited Thermoplasma acidophilum histidine ammonia lyase. However, immobilizing the enzyme in polymer brushes using the grafting-from method resulted in twice the enzymatic activity from the grafting-to approach, illustrating a successful enzyme deposition on a solid support.


Assuntos
Histidina Amônia-Liase , Polímeros , Polímeros/química , Metacrilatos/química , Dióxido de Silício
3.
Mater Adv ; 3(8): 3649-3662, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36238657

RESUMO

Extremophile enzymes are useful in biotechnology and biomedicine due to their abilities to withstand harsh environments. The abilities of histidine ammonia lyases from different extremophiles to preserve their catalytic activities after exposure to acid were assessed. Thermoplasma acidophilum histidine ammonia lyase was identified as an enzyme with a promising catalytic profile following acid treatment. The fusion of this enzyme with the maltose-binding protein or co-incubation with the chaperone HdeA further helped Thermoplasma acidophilum histidine ammonia lyase to withstand acid treatments down to pH 2.8. The assembly of a microreactor by encapsulation of MBP-Thermoplasma acidophilum histidine ammonia lyase into a photocrosslinked poly(vinyl alcohol) hydrogel allowed the enzyme to recover over 50% of its enzymatic activity following exposure to simulated gastric and intestinal fluids. Our results show that using engineered proteins obtained from extremophiles in combination with polymer-based encapsulation can advance the oral formulations of biologicals.

4.
Biomacromolecules ; 23(3): 1052-1064, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020375

RESUMO

Bottom-up synthetic biology aims to integrate artificial moieties with living cells and tissues. Here, two types of structural scaffolds for artificial organelles were compared in terms of their ability to interact with macrophage-like murine RAW 264.7 cells. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) was used to assemble micelles and polymer-lipid hybrid vesicles together with 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids in the latter case. In addition, the pH-sensitive fusogenic peptide GALA was conjugated to the carriers to improve their lysosomal escape ability. All assemblies had low short-term toxicity toward macrophage-like murine RAW 264.7 cells, and the cells internalized both the micelles and hybrid vesicles within 24 h. Assemblies containing DOPE lipids or GALA in their building blocks could escape the lysosomes. However, the intracellular retention of the building blocks was only a few hours in all the cases. Taken together, the provided comparison between two types of potential scaffolds for artificial organelles lays out the fundamental understanding required to advance soft material-based assemblies as intracellular nanoreactors.


Assuntos
Micelas , Polímeros , Animais , Camundongos , Peptídeos , Polímeros/química , Células RAW 264.7
6.
J Phys Chem B ; 123(1): 130-137, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30537817

RESUMO

The intracellular C-terminal domain (CTD) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor undergoes phosphorylation at specific locations during long-term potentiation. This modification enhances conductance through the AMPA receptor ion channel and thus potentially plays a crucial role in modulating receptor trafficking and signaling. However, because the CTD structure is largely unresolved, it is difficult to establish if phosphorylation induces conformational changes that might play a role in enhancing channel conductance. Herein, we utilize single-molecule Förster resonance energy transfer (smFRET) spectroscopy to probe the conformational changes of a section of the AMPA receptor CTD, under the conditions of point-mutated phosphomimicry. Multiple analysis algorithms fail to identify stable conformational states within the smFRET distributions, consistent with a lack of well-defined secondary structure. Instead, our results show that phosphomimicry induces conformational rigidity to the CTD, and such rigidity is electrostatically tunable.


Assuntos
Receptores de AMPA/química , Animais , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Fosforilação , Conformação Proteica , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...