Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 38(1): 349-360, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308588

RESUMO

Exposure to environmental toxicants has been linked with the onset of different neurodegenerative diseases in animals and humans. Here, we evaluated the toxic effects of co-exposure to iron and rotenone at low concentrations in Drosophila melanogaster. Adult wild-type flies were orally exposed to rotenone (50.0 µM) and ferrous sulfate (FeSO4; 1.0 and 10.0 µM) through the diet for 10 days. Thereafter, we evaluated markers of oxidative damage (Hydrogen Peroxide (H2O2), Nitric Oxide (NO), Protein Carbonyl, and malondialdehyde (MDA)), antioxidant status (catalase, Glutathione S-Transferase (GST), Total Thiol (T-SH) and Non-protein Thiol (NPSH), neurotransmission (monoamine oxidase; MAO and acetylcholinesterase, AChE) and mitochondrial respiration. The results indicated that flies fed rotenone and FeSO4 had impaired locomotion, reduced survival rate, and AChE activity with a corresponding increase in MAO activity when compared with the control (p < 0.05). Furthermore, rotenone and FeSO4 significantly decreased the antioxidant status with a concurrent accumulation of NO, MDA, and H2O2. Additionally, the activity of complex 1 and mitochondria bioenergetic capacity was compromised in the flies. These findings suggest that the combination of rotenone and FeSO4 elicited a possible synergistic toxic response in the flies and therefore provided further insights on the use of D. melanogaster in toxicological studies.


Assuntos
Antioxidantes , Rotenona , Humanos , Animais , Antioxidantes/farmacologia , Rotenona/toxicidade , Drosophila melanogaster , Ferro/metabolismo , Acetilcolinesterase/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Compostos de Sulfidrila/metabolismo
2.
Sci Rep ; 12(1): 3922, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273283

RESUMO

Loss-of-function mutations in parkin is associated with onset of juvenile Parkinson's disease (PD). Resveratrol is a polyphenolic stilbene with neuroprotective activity. Here, we evaluated the rescue action of resveratrol in parkin mutant D. melanogaster. The control flies (w1118) received diet-containing 2% ethanol (vehicle), while the PD flies received diets-containing resveratrol (15, 30 and 60 mg/kg diet) for 21 days to assess survival rate. Consequently, similar treatments were carried out for 10 days to evaluate locomotor activity, oxidative stress and antioxidant markers. We also determined mRNA levels of Superoxide dismutase 1 (Sod1, an antioxidant gene) and ple, which encodes tyrosine hydroxylase, the rate-limiting step in dopamine synthesis. Our data showed that resveratrol improved survival rate and climbing activity of PD flies compared to untreated PD flies. Additionally, resveratrol protected against decreased activities of acetylcholinesterase and catalase and levels of non-protein thiols and total thiols displayed by PD flies. Moreover, resveratrol mitigated against parkin mutant-induced accumulations of hydrogen peroxide, nitric oxide and malondialdehyde. Resveratrol attenuated downregulation of ple and Sod1 and reduction in mitochondrial fluorescence intensity displayed by PD flies. Overall, resveratrol alleviated oxidative stress and locomotor deficit associated with parkin loss-of-function mutation and therefore might be useful for the management of PD.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Estresse Oxidativo , Resveratrol/farmacologia , Compostos de Sulfidrila , Superóxido Dismutase-1 , Ubiquitina-Proteína Ligases/genética
3.
Sci Rep ; 12(1): 4594, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301354

RESUMO

Trans-astaxanthin (TA), a keto-carotenoid found in aquatic invertebrates, possesses anti-oxidative and anti-inflammatory activities. Rotenone is used to induce oxidative stress-mediated Parkinson's disease (PD) in animals. We probed if TA would protect against rotenone-induced toxicity in Drosophila melanogaster. Trans-astaxanthin (0, 0.1, 0.5, 1.0, 2.5, 10, and 20 mg/10 g diet) and rotenone (0, 250 and 500 µM) were separately orally exposed to flies in the diet to evaluate longevity and survival rates, respectively. Consequently, we evaluated the ameliorative actions of TA (1.0 mg/10 g diet) on rotenone (500 µM)-induced toxicity in Drosophila after 7 days' exposure. Additionally, we performed molecular docking of TA against selected pro-inflammatory protein targets. We observed that TA (0.5 and 1.0 mg/10 g diet) increased the lifespan of D. melanogaster by 36.36%. Moreover, TA (1.0 mg/10 g diet) ameliorated rotenone-mediated inhibition of Catalase, Glutathione-S-transferase and Acetylcholinesterase activities, and depletion of Total Thiols and Non-Protein Thiols contents. Trans-astaxanthin prevented behavioural dysfunction and accumulation of Hydrogen Peroxide, Malondialdehyde, Protein Carbonyls and Nitric Oxide in D. melanogaster (p < 0.05). Trans-astaxanthin showed higher docking scores against the pro-inflammatory protein targets evaluated than the standard inhibitors. Conclusively, the structural features of TA might have contributed to its protective actions against rotenone-induced toxicity.


Assuntos
Drosophila melanogaster , Rotenona , Acetilcolinesterase/metabolismo , Animais , Carotenoides/metabolismo , Drosophila melanogaster/metabolismo , Glutationa Transferase/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo , Rotenona/metabolismo , Rotenona/toxicidade , Compostos de Sulfidrila/metabolismo , Xantofilas
4.
Food Chem Toxicol ; 157: 112620, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34656695

RESUMO

Hyperglycaemia-induced oxidative stress plays a critical role in the development of diabetes and its complications. This study investigated actions of esculentin-2CHa(GA30) on high sucrose-induced oxidative stress in adult Drosophila melanogaster. Adult flies were exposed to diets containing graded concentrations of sucrose in the presence or absence of esculentin-2CHa(GA30) (5.0-10 µmol/kg diet) for 7 days. Effects of high sucrose diet and/or esculentin-2CHa(GA30) on survival and longevity of flies, and markers of oxidative stress, antioxidant status and glucose were assessed. High-sucrose diet (15-30%) and esculentin-2CHa(GA30) (5-10 µmol/kg diet) enhanced the percentage of surviving flies by 33.5%-46.2% (P < 0.01) and 7.4%-26.9% (P < 0.01) respectively. Concentration-dependent reduction in total thiol (19.3-51.3%, P < 0.01), reduced glutathione (22.6-54.9%, P < 0.05-0.01), catalase activity (36.8-57.3%, P < 0.05-0.01) and elevated glucose concentration (1.8-2.9-fold, P < 0.001) were observed in high sucrose-fed flies. Esculentin-2CHa(GA30) alone did not affect levels of total thiol, reduced glutathione, glucose and catalase activity. Improved survival (1.2-1.3-fold, P < 0.05-0.01) and longevity (1.3-fold) were observed in flies treated with the peptide (5.0 and 7.5 µmol/kg diet). Feeding on sucrose and esculentin-2CHa(1-30) (5.0 and 7.0 µmol/kg diet) for 7 days increased total thiol (2 - 3-fold, P < 0.001) and reduced glutathione (1.6-1.8-fold, P < 0.05) levels. Reduced catalase activity (21.4-36.4%, P < 0.01) and reduced glucose level (38.6-49.4%, P < 0.01) were observed in peptide-treated flies. Esculentin-2CHa(1-30) inhibited sucrose-induced generation of hydrogen peroxide (7.5-13.7%, P < 0.05) and nitric oxide (22.3-42.9%, P < 0.01) in adult flies. Overall, findings from this study offered further insights into the anti-oxidative properties of esculentin-2CHa(GA30).


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sacarose/farmacologia , Animais , Catalase/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Glucose/metabolismo , Glutationa/metabolismo , Longevidade/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo
5.
Food Chem Toxicol ; 142: 111478, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504732

RESUMO

Bisphenol A (BPA) is an industrial chemical used in the production of various plastic materials. It is associated with reproductive, immunological and neurological disorders. Luteolin, a flavonoid found in fruits and vegetables, possesses anti-oxidative, anti-inflammatory and free radical scavenging properties. Here, we carried out studies to ascertain if Luteolin would ameliorate BPA-induced toxicity in Drosophila melanogaster. Firstly, flies were treated separately with Luteolin (0, 50, 100, 150 and 300 mg/kg diet) and BPA (0, 0.01, 0.05 and 0.1 mM) for 28 days survival assessments. Consequently, Luteolin (150 and 300 mg/kg diet) and/or BPA (0.05 mM) were exposed to D. melanogaster for 7 days for the evaluation of nitric oxide level, eclosion rate, viability assay, histology of fat body, antioxidant (Glutathione-S-transferase, catalase and total thiol), oxidative stress (hydrogen peroxide) and behavioural (negative geotaxis and acetylcholinesterase) markers. The results showed that BPA induced antioxidant-oxidative stress imbalance and behavioural deficit in flies. Luteolin increased survival rate and augmented antioxidant markers in flies. Importantly, Luteolin ameliorated BPA-induced degeneration in the fat body around the rostral, thorax and abdominal regions, oxidative stress, behavioural deficit, reduction in cell viability and eclosion rate of D. melanogaster (p < 0.05). Overall, this study offered further insights on the antioxidative and chemopreventive properties of Luteolin against BPA-induced toxicity.


Assuntos
Compostos Benzidrílicos/toxicidade , Suplementos Nutricionais , Disruptores Endócrinos/toxicidade , Luteolina/administração & dosagem , Fenóis/toxicidade , Acetilcolinesterase/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Drosophila melanogaster , Locomoção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
6.
Biochem Biophys Res Commun ; 503(2): 1042-1048, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29935183

RESUMO

1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) is a neurotoxin that causes Parkinson's disease in animals via mechanisms linked with oxidative stress and inflammation. Resveratrol is a natural polyphenol and a phytoalexin with antioxidative and antiinflammatory properties. Here, we investigated the rescue role of resveratrol on MPTP-triggered toxicity in Drosophila melanogaster for the first time. D. melanogaster (Harwich strain, 1-to 3- days old) were first orally exposed to resveratrol (0, 7.5, 15, 30, 60 and 120 mg/kg diet) and MPTP (0, 250, 500, 1000, 2000, and 3000 µM) for longevity and 7 days survival assays respectively. Consequently, we selected resveratrol (30 and 60 mg/kg diet) to evaluate its rescue role on MPTP (250 and 500 µM)-induced toxicity in D. melanogaster after 3 days of oral treatment. Specifically, we evaluated markers of neurotoxicity (acetylcholinesterase and negative geotaxis), inflammation (nitric oxide), oxidative stress-antioxidant status (hydrogen peroxide, total thiol, catalase and glutathione-S-transferase), cell viability and fecundity. The data showed that resveratrol increased lifespan of D. melanogaster in a dose-dependent manner up to 60 mg/kg diet. Further, resveratrol restored MPTP-induced inhibition of catalase, glutathione-S-transferase and acetylcholinesterase activities in D. melanogaster. Moreover, resveratrol ameliorated MPTP-triggered cell death, histological alterations, behavioural deficits and accumulation of nitric oxide and hydrogen peroxide levels in flies (p < 0.05). Conclusively, the lifespan extension effects of resveratrol and its rescue role on MPTP- mediated toxicity in the flies may be due to its antioxidant and anti-inflammatory properties.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Antioxidantes/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Acetilcolinesterase/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Glutationa Transferase/metabolismo , Peróxido de Hidrogênio/metabolismo , Longevidade/efeitos dos fármacos , Óxido Nítrico/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...