Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133102, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38070270

RESUMO

The interference of three types of microplastics (MPs) on the inactivation of Escherichia coli (E. coli) by advanced oxidation processes (AOPs) (namely, sunlight/H2O2 and solar photo-Fenton (SPF) with Ethylenediamine-N,N'-disuccinic acid (EDDS)), in real secondary treated urban wastewater was investigated for the first time. Inactivation by sunlight/H2O2 treatment decreased as MPs concentration and H2O2 dose were increased. Noteworthy, an opposite behaviour was observed for SPF process where inactivation increased as MPs concentration was increased. Biofilm formation and microbial attachment on surfaces of post-treated MPs were observed on polyethylene (PE) and polyvinyl chloride (PVC) MPs by field emission scanning electron microscopy. In presence of PE MPs, a complete inactivation of E. Coli was achieved by SPF with EDDS (Fe:EDDS = 1:2) after 90 min treatment unlike of sunlight/H2O2 treatment (∼4.0 log reduction, 40 mg/L H2O2 dose, 90 min treatment). The lower efficiency of sunlight/H2O2 process could be attributed to the blocking/scattering effect of MPs on sunlight, which finally reduced the intracellular photo Fenton effect. A reduced E. coli regrowth was observed in presence of MPs. SPF (Fe:EDDS = 1:1) with PE MPs was less effective in controlling bacterial regrowth (∼120 CFU/100 mL) than sunlight/H2O2 (∼10 CFU/100 mL) after 48 h of post-treatment. These results provide useful information about possible interference of MPs on urban wastewater disinfection by solar driven AOPs and possible implications for effluent reuse.


Assuntos
Desinfecção , Águas Residuárias , Desinfecção/métodos , Escherichia coli , Peróxido de Hidrogênio/química , Microplásticos/farmacologia , Plásticos , Ferro/química , Luz Solar , Concentração de Íons de Hidrogênio , Oxirredução
2.
Water Res ; 135: 31-43, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29454239

RESUMO

Phenol recovery from phenol-laden saline wastewater plays an important role in the waste reclamation and pollution control. A membrane aromatic recovery system-like membrane contactor (MARS-like membrane contactor) was set up in this study using electrospun polydimethylsiloxane/polymethyl methacrylate (PDMS/PMMA) membrane with 0.0048 m2 effective area to separate phenol from saline wastewater. Phenol and water contact angles of 0° and 162° were achieved on this membrane surface simultaneously, indicating its potential in the separation of phenol and water-soluble salt. Feed solution (500 mL) of 0.90 L/h and receiving solution (500 mL) of 1.26 L/h were investigated to be the optimum conditions for phenol separation, which corresponds to the employed Reynolds number of 14.6 and 20.5. During 108-h continuous separation for feed solution (2.0 g/L phenol, 10.0 g/L NaCl) under room temperature (20 °C), 42.6% of phenol was recycled in receiving solution with a salt rejection of 99.95%. Meanwhile, the mean phenol mass transfer coefficient (Kov) was 6.7 × 10-7 m s-1. As a membrane-based process, though the permeated phenol increased with the increase of phenol concentration in feed solution, the phenol recovery ratio was determined by the membrane properties rather than the pollutant concentrations. Phenol was found to permeate this membrane via adsorption, diffusion and desorption, and therefore, the membrane fouling generated from pore blockage in other membrane separation processes was totally avoided.


Assuntos
Membranas Artificiais , Fenol/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Dimetilpolisiloxanos/química , Desenho de Equipamento , Metacrilatos/química , Polimetil Metacrilato/química , Cloreto de Sódio , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química , Purificação da Água/instrumentação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...