Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403656, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818675

RESUMO

Monolayer boron nanosheet, commonly known as borophene, has garnered significant attention in recent years due to its unique structural, electronic, mechanical, and thermal properties. This review paper provides a comprehensive overview of the advancements in the synthetic strategies, tunable properties, and prospective applications of borophene, specifically focusing on its potential in energy storage devices. The review begins by discussing the various synthesis techniques for borophene, including molecular beam epitaxy (MBE), chemical vapor deposition (CVD), and chemical methods, such as ultrasonic exfoliation and thermal decomposition of boron-containing precursors. The tunable properties of borophene, including its electronic, mechanical, and thermal characteristics, are extensively reviewed, with discussions on its bandgap engineering, plasmonic behavior, and thermal conductivity. Moreover, the potential applications of borophene in energy storage devices, particularly as anode materials in metal-ion batteries and supercapacitors, along with its prospects in other energy storage systems, such as sodium-oxygen batteries, are succinctly, discussed. Hence, this review provides valuable insights into the synthesis, properties, and applications of borophene, offering much-desired guidance for further research and development in this promising area of nanomaterials science.

2.
Environ Sci Pollut Res Int ; 31(22): 32282-32300, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649603

RESUMO

This study focused on the efficacy of a calcined layered double hydroxide (CLDH) clay in adsorbing two antiretroviral drugs (ARVDs), namely efavirenz (EFV) and nevirapine (NVP), from wastewater. The clay was synthesized using the co-precipitation method, followed by subsequent calcination in a muffle furnace at 500 °C for 4 h. The neat and calcined clay samples were subjected to various characterization techniques to elucidate their physical and chemical properties. Response surface modelling (RSM) was used to evaluate the interactions between the solution's initial pH, adsorbent loading, reaction temperature, and initial pollutant concentration. Additionally, the adsorption kinetics, thermodynamics, and reusability of the adsorbent were evaluated. The results demonstrated that NVP exhibited a faster adsorption rate than EFV, with both reaching equilibrium within 20-24 h. The pseudo-second order (PSO) model provided a good fit for the kinetics data. Thermodynamics analysis revealed that the adsorption process was spontaneous and exothermic, predominantly governed by physisorption interactions. The adsorption isotherms followed the Freundlich model, and the maximum adsorption capacities for EFV and NVP were established to be 2.73 mg/g and 2.93 mg/g, respectively. Evaluation of the adsorption mechanism through computational analysis demonstrated that both NVP and EFV formed stable complexes with CLDH, with NVP exhibiting a higher affinity. The associated adsorption energies were established to be -731.78 kcal/mol for NVP and -512.6 kcal/mol for EFV. Visualized non-covalent interaction (NCI) graphs indicated that hydrogen bonding played a significant role in ARVDs-CLDH interactions, further emphasizing physisorption as the dominant adsorption mechanism.


Assuntos
Argila , Hidróxidos , Termodinâmica , Adsorção , Argila/química , Cinética , Hidróxidos/química , Antirretrovirais/química , Poluentes Químicos da Água/química , Benzoxazinas/química , Águas Residuárias/química , Alcinos/química , Ciclopropanos
3.
ACS Omega ; 7(44): 39498-39519, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385802

RESUMO

The atomically thick two-dimensional (2D) materials are at the forefront of revolutionary technologies for energy storage devices. Due to their fascinating physical and chemical features, these materials have gotten a lot of attention. They are particularly appealing for a wide range of applications, including electrochemical storage systems, due to their simplicity of property tuning. The MXene is a type of 2D material that is widely recognized for its exceptional electrochemical characteristics. The use of these materials in conjunction with conducting polymers, notably polypyrrole (PPy), has opened new possibilities for lightweight, flexible, and portable electrodes. Therefore, herein we report a comprehensive review of recent achievements in the production of MXene/PPy nanocomposites. The structural-property relationship of this class of nanocomposites was taken into consideration with an elaborate discussion of the various characterizations employed. As a result, this research gives a narrative explanation of how PPy interacts with distinct MXenes to produce desirable high-performance nanocomposites. The effects of MXene incorporation on the thermal, electrical, and electrochemical characteristics of the resultant nanocomposites were discussed. Finally, it is critically reviewed and presented as an advanced composite material in electrochemical storage devices, energy conversion, electrochemical sensors, and electromagnetic interference shielding.

4.
ACS Omega ; 7(38): 33808-33820, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188269

RESUMO

In this paper, density functional theory (DFT) simulations are used to evaluate the possible use of a graphene oxide-based poly(ethylene glycol) (GO/PEG) nanocomposite as a drug delivery substrate for cephalexin (CEX), an antibiotic drug employed to treat wound infection. First, the stable configuration of the PEGylated system was generated with a binding energy of -25.67 kcal/mol at 1.62 Å through Monte Carlo simulation and DFT calculation for a favorable adsorption site. The most stable configuration shows that PEG interacts with GO through hydrogen bonding of the oxygen atom on the hydroxyl group of PEG with the hydrogen atom of the carboxylic group on GO. Similarly, for the interaction of the CEX drug with the GO/PEG nanocomposite excipient system, the adsorption energies are computed after determining the optimal and thermodynamically favorable configuration. The nitrogen atom from the amine group of the drug binds with a hydrogen atom from the carboxylic group of the GO/PEG nanocomposite at 1.75 Å, with an adsorption energy of -36.17 kcal/mol, in the most stable drug-excipient system. Drug release for tissue regeneration at the predicted target cell is more rapid in moist conditions than in the gas phase. The solubility of the suggested drug in the aqueous media around the open wound is shown by the magnitude of the predicted solvation energy. The findings from this study theoretically validate the potential use of a GO/PEG nanocomposite for wound treatment application as a drug carrier for sustained release of the CEX drug.

5.
Pharmaceutics ; 14(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145719

RESUMO

Drug delivery systems transfer medications to target locations throughout the body. These systems are often made up of biodegradable and bioabsorbable polymers acting as delivery components. The introduction of density functional theory (DFT) has tremendously aided the application of computational material science in the design and development of drug delivery materials. The use of DFT and other computational approaches avoids time-consuming empirical processes. Therefore, this review explored how the DFT computation may be utilized to explain some of the features of polymer-based drug delivery systems. First, we went through the key aspects of DFT and provided some context. Then we looked at the essential characteristics of a polymer-based drug delivery system that DFT simulations could predict. We observed that the Gaussian software had been extensively employed by researchers, particularly with the B3LYP functional and 6-31G(d, p) basic sets for polymer-based drug delivery systems. However, to give researchers a choice of basis set for modelling complicated organic systems, such as polymer-drug complexes, we then offered possible resources and presented the future trend.

6.
ACS Omega ; 7(51): 48447-48466, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36619495

RESUMO

Conductive organic nanocomposites have been widely employed to achieve a variety of purposes, particularly for energy storage applications, making it necessary to investigate transport properties such as electron and heat transport qualities based on geometric shapes and component materials. Due to the solid B-B bonds, unique atomic structure, and energy storage potential, borophene has received significant attention due to its reported ultrahigh mechanical modulus and metallic conduction. Herein, we investigated the effect and interaction of content materials (volume fraction) and geometric parameters such as the aspect ratio and orientation of borophene nanoplatelet (BNP) inclusions on the mechanical integrity and transport features (electrical and thermal conductivities) of a poly(3,4-ethylene dioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS) electrode. The boundary condition is crucial in developing the predictive models for the optimized mechanical and transport properties of the composites. The effective modulus, electrical conductivity, and thermal conductivity of the BNP-reinforced PEDOT:PSS-based nanocomposite are evaluated using the periodic boundary condition, the representative volume element-based finite element homogenization, and statistical analysis response surface techniques. The optimal parameters for the PEDOT:PSS/BNP nanocomposite for energy storage application are predicted based on the desirability function to have a 13.96% volume fraction of BNPs, having an aspect ratio of 0.04 at 45° inclination. The desirability value achieved for the material hinges was 0.78 with a predicted Young's modulus of 6.73 GPa, the electrical conductivity was 633.85 S/cm, and the thermal conductivity was 1.96 W/m K at a generally high predictive performance of <0.03 error. The effective thermal conductivity of the nanocomposite was determined by considering Kapitsa nanoeffects, which exhibit an interfacial thermal resistance of 2.42 × 10-9 m2 K/W. Based on these improved findings, the enhanced PEDOT:PSS/BNP nanocomposite electrode would be a promising material for metal-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...