Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(11): 349, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733140

RESUMO

Pseudomonas aeruginosa infection in seriously ill patients is a major concern due to its ability to form biofilm and secrete effector toxins. There is little information on the prevalence of T3SS effector toxins and biofilm production in clinical isolates of P. aeruginosa from Nigeria. The goal of this study is to evaluate the prevalence of T3SS toxins and biofilm production among isolates from selected tertiary hospitals in Nigeria. This study examined 430 clinical isolates from our previous work, comprising 181 MDR (multidrug-resistant) and 249 non-MDR isolates. Biofilm production and type III secretion toxins were determined using colorimetric microtiter plate assay and polymerase chain reaction, respectively. Carbapenem-resistant isolates were typed using REP-PCR and BOX-PCR. Biofilm production was detected in 386/430 (89.8%) of the isolates. Out of 386 biofilm producers, 167 (43.3%) were multidrug-resistant isolates. PCR identified four T3SS virulence types among 430 isolates, including 78 (18.1%) exoU+/exoS- isolates, 343 (79.8%) exoU-/exoS + isolates, 5 (1.2%) exoU+/exoS + isolates, and 4 (0.9%) exoU-/exoS- isolates. Both REP- and BOX-PCR consist of eight clusters. On the REP-PCR dendrogram, ExoU+/ExoS- isolates majorly occupied cluster IV. Clusters IV, VII, and VIII consist of isolates from wounds on BOX-PCR dendrogram. There was a positive association between strong biofilm production and multidrug resistance in our P. aeruginosa isolates. This study identified multidrug-resistant, biofilm-producing P. aeruginosa strains that secrete cytotoxic effectors which are significant virulence factors in P. aeruginosa. This poses a severe risk to our healthcare system and highlights the importance of continuous surveillance to prevent infectious disease outbreaks.


Assuntos
Pseudomonas aeruginosa , Sistemas de Secreção Tipo III , Humanos , Nigéria , Prevalência , Sistemas de Secreção Tipo III/genética , Pseudomonas aeruginosa/genética , Biofilmes
2.
Microbiol Insights ; 15: 11786361221130313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329710

RESUMO

A serious concern of public-health proportion is rising from the carriage of antibiotic resistance determinant in Non-Lactose-Fermenting Bacteria and acquisition of virulence particularly in strains that are not routinely isolated or screened from common food animals. This study investigated the resistance profile and pathogenicity potential of selected Non-Lactose-Fermenting Bacteria isolated from 18 poultry farms. In total, we investigated the antibiotic susceptibility patterns of 25 Pseudomonas lactis and 71 Pseudomonas paralactis isolated from chicken faeces by testing them against 12 antibiotics. Resistance genes borne by the selected isolates were screened by sequencing the genetic location of resistance determinants was determined by plasmid curing. The virulence potential of the studied strains was determined phenotypically. Pseudomonas lactis isolates were mostly resistant to azetronam (93%), followed by trimethoprim (90%), cefotaxime (86%) and then amoxicillin/clavulanic acid (57%), while Pseudomonas paralactis. isolates were most resistant to azetronam (94%), trimethoprim (90%), cefepime (80%), piperacillin (75%) and amoxicillin/clavulanic acid (70%). The Multiple Antibiotic Resistance Index of Pseudomonas lactis and Pseudomonas paralactis isolates respectively ranged from 0.0 to 0.8 and 0.0 to 0.9. Polymerase Chain Reaction revealed the presence of antibiotic resistance factors such as blaCTX-M, qnrS, aac (6')-lb-cr and blaSHV while plasmid curing revealed carriages of resistance determinants on Resistance Plasmid. Moreover, virulence enzymes such as alkaline protease and phospholipase C were found in 3% and 12% of Pseudomonas paralactis and Pseudomonas lactis, respectively. This study reports the first occurrence of Pseudomonas lactis and Pseudomonas paralactis strains from chicken faeces, and their antimicrobial resistance and relative virulence suggest the encroachment of food animals by the under-studied non-lactose-fermenting bacteria that should alert public health concerns.

3.
Curr Microbiol ; 79(1): 27, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905085

RESUMO

Pseudomonas aeruginosa, resistant to multiple antibacterial agents including carbapenems, is of great global public health concern. There is limited data available regarding incidence of Metallo-Beta Lactamase producing P. aeruginosa, their molecular basis of resistance in particular carbapenem resistance and any genetic relatedness among circulating clinical isolates in Southwest Nigeria. Four hundred and thirty P. aeruginosa isolates were collected from seven tertiary care hospitals (predominantly from wound, ear, and urinary tract infections) and verified by PCR targeting oprI and oprL. Antibiotic susceptibility using 16 selected antibiotics and MBL screening was performed. The integrons (class 1, 2 and 3) and carbapenemase genes- blaGES, blaNMC-A, blaBIC-1, blaSME, blaIMP, blaVIM, blaSPM, blaNDM, blaAIM, blaDIM, blaSIM, blaGIM, blaOXA-48, blaOXA-58 were detected by PCR and were sequenced. Quantitative real-time polymerase chain reaction was used to quantify expression levels of eight efflux pump genes, ampC cephalosporinase and outer membrane porin, oprD. The isolates were genotyped using Enterobacterial Repetitive Intergenic Consensus sequence Polymerase Chain Reaction (ERIC-PCR). Four hundred and thirty P. aeruginosa isolates were subjected to antibiotic susceptibility testing, revealing that 109 (25.4%) isolates were multidrug-resistant, 47 (10.9%) were extensively drug-resistant and 25 (5.8%) were pandrug-resistant. MBL was seen in 17.0% (73/430) isolates. MBL-encoding genes; blaVIM-5 and blaNDM-1 were detected in 86.3% (63/73) isolates, with blaVIM-5 and blaNDM-1 in 35.6% (26/73) and 38.4% (28/73), respectively, whereas co-occurrence of blaVIM-5 and blaNDM-1 was found in 12.3% (9/73). Forty-one (56.2%) carbapenem-resistant P. aeruginosa strains carried class 1 integrons, while co-occurrence of class 1 and 2 integrons was seen in 12.3%. qPCR results indicated that MexXY-OprM was highly expressed pump in 58.9%, ampC upregulated in 26.0%, while oprD porin was downregulated in 65.8% isolates. ERIC-PCR results suggest that carbapenem-resistant strains exhibit genetic heterogeneity. The high incidence of MBL-encoding genes and integrons in diversified clinical P. aeruginosa from southwestern Nigeria is of great concern. The co-occurrence of blaVIM-5 and blaNDM-1 as well as resistance in general manifesting a gradient based on genotypic variation suggests that there is a strong need for efficient surveillance programs and antibiotic stewardship.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Proteínas de Bactérias , Humanos , Incidência , Testes de Sensibilidade Microbiana , Nigéria , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética , Atenção Terciária à Saúde , beta-Lactamases/genética
4.
Afr Health Sci ; 7(3): 159-65, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18052870

RESUMO

BACKGROUND: Honey is an ancient remedy for the treatment of infected wounds, which has recently been 'rediscovered' by the medical profession. The use to which honey is put in medical care is increasing daily with many authors pointing out its importance and role in wound care. There have been reports that honey contains many microorganisms including bacteria and fungi. OBJECTIVE: The aim of this paper is to highlight the various uses, organisms commonly found in honey, how the organisms arrived in the honey and their effects on wounds and wound care. Would the presence of these organisms not constitute a limiting factor to the use of honey in wound management? This is what this review aims to answer. METHODS: A literature search was done on honey using pubmed, google, local books and journals. Relevant journals were extracted and discussed with emphasis on the antimicrobial properties as well as microbial content of honey and the implications of these. RESULTS: The production of honey as well as the storing process account for the presence of microorganisims. Most of these organisms are said to be in inactive forms as they can hardly survive in honey because of its several properties including hygroscopicity, hyperosmolarity, acidity, peroxide content, antibiotic activities etc. However there is a need for caution in the use of honey in wound management. CONCLUSION: We suggest that wounds to be treated with honey should be investigated i.e with a swab for the microorganisms present on the wound and their sensitivity to the honey before commencing honey treatment. This will help in carefully selecting wounds that might do well with honey treatment not withstanding other properties of honey that aid wound healing.


Assuntos
Mel/microbiologia , Cicatrização/fisiologia , Anti-Infecciosos , Bactérias/crescimento & desenvolvimento , Terapias Complementares/métodos , Fungos/crescimento & desenvolvimento , Mel/análise , Humanos , Ferimentos e Lesões/enfermagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...