Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 37(5-6): 171-190, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859339

RESUMO

Both the presence of an abnormal complement of chromosomes (aneuploidy) and an increased frequency of chromosome missegregation (chromosomal instability) are hallmarks of cancer. Analyses of cancer genome data have identified certain aneuploidy patterns in tumors; however, the bases behind their selection are largely unexplored. By establishing time-resolved long-term adaptation protocols, we found that human cells adapt to persistent spindle assembly checkpoint (SAC) inhibition by acquiring specific chromosome arm gains and losses. Independently adapted populations converge on complex karyotypes, which over time are refined to contain ever smaller chromosomal changes. Of note, the frequencies of chromosome arm gains in adapted cells correlate with those detected in cancers, suggesting that our cellular adaptation approach recapitulates selective traits that dictate the selection of aneuploidies frequently observed across many cancer types. We further engineered specific aneuploidies to determine the genetic basis behind the observed karyotype patterns. These experiments demonstrated that the adapted and engineered aneuploid cell lines limit CIN by extending mitotic duration. Heterozygous deletions of key SAC and APC/C genes recapitulated the rescue phenotypes of the monosomic chromosomes. We conclude that aneuploidy-induced gene dosage imbalances of individual mitotic regulators are sufficient for altering mitotic timing to reduce CIN.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Neoplasias , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Aneuploidia , Neoplasias/genética , Instabilidade Cromossômica/genética , Cariótipo , Fuso Acromático/genética , Mitose
2.
EMBO J ; 42(8): e111500, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36530167

RESUMO

Both an increased frequency of chromosome missegregation (chromosomal instability, CIN) and the presence of an abnormal complement of chromosomes (aneuploidy) are hallmarks of cancer. To better understand how cells are able to adapt to high levels of chromosomal instability, we previously examined yeast cells that were deleted of the gene BIR1, a member of the chromosomal passenger complex (CPC). We found bir1Δ cells quickly adapted by acquiring specific combinations of beneficial aneuploidies. In this study, we monitored these yeast strains for longer periods of time to determine how cells adapt to high levels of both CIN and aneuploidy in the long term. We identify suppressor mutations that mitigate the chromosome missegregation phenotype. The mutated proteins fall into four main categories: outer kinetochore subunits, the SCFCdc4 ubiquitin ligase complex, the mitotic kinase Mps1, and the CPC itself. The identified suppressor mutations functioned by reducing chromosomal instability rather than alleviating the negative effects of aneuploidy. Following the accumulation of suppressor point mutations, the number of beneficial aneuploidies decreased. These experiments demonstrate a time line of adaptation to high rates of CIN.


Assuntos
Proteínas F-Box , Neoplasias , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Aneuploidia , Instabilidade Cromossômica/genética , Cinetocoros/metabolismo , Neoplasias/genética , Segregação de Cromossomos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas F-Box/genética
3.
Elife ; 62017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019322

RESUMO

The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3-45 s lifetimes, the ESCRT-III assemblies accumulated 75-200 Snf7 and 15-50 Vps24 molecules. Productive budding events required at least two additional Vps4 hexamers. Membrane budding was associated with continuous, stochastic exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and depended on Vps4 ATPase activity. An all-or-none step led to final release of ESCRT-III and Vps4. Tomographic electron microscopy demonstrated that acute disruption of Vps4 recruitment stalled membrane budding. We propose a model in which multiple Vps4 hexamers (four or more) draw together several ESCRT-III filaments. This process induces cargo crowding and inward membrane buckling, followed by constriction of the nascent bud neck and ultimately ILV generation by vesicle fission.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tomografia com Microscopia Eletrônica , Microscopia de Fluorescência
4.
J Cell Biol ; 205(1): 33-49, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24711499

RESUMO

Five endosomal sorting complexes required for transport (ESCRTs) mediate the degradation of ubiquitinated membrane proteins via multivesicular bodies (MVBs) in lysosomes. ESCRT-0, -I, and -II interact with cargo on endosomes. ESCRT-II also initiates the assembly of a ringlike ESCRT-III filament consisting of Vps20, Snf7, Vps24, and Vps2. The AAA-adenosine triphosphatase Vps4 disassembles and recycles the ESCRT-III complex, thereby terminating the ESCRT pathway. A mechanistic role for Vps4 in intraluminal vesicle (ILV) formation has been unclear. By combining yeast genetics, biochemistry, and electron tomography, we find that ESCRT-III assembly on endosomes is required to induce or stabilize the necks of growing MVB ILVs. Yet, ESCRT-III alone is not sufficient to complete ILV biogenesis. Rather, binding of Vps4 to ESCRT-III, coordinated by interactions with Vps2 and Snf7, is coupled to membrane neck constriction during ILV formation. Thus, Vps4 not only recycles ESCRT-III subunits but also cooperates with ESCRT-III to drive distinct membrane-remodeling steps, which lead to efficient membrane scission at the end of ILV biogenesis in vivo.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Corpos Multivesiculares/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Curr Biol ; 22(15): R603-5, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22877781

RESUMO

Advanced live-cell imaging of the endosomal sorting complexes required for transport (ESCRT) and computational modeling have provided insights into the Vps4-dependent dynamic rearrangements of ESCRT-III filaments during membrane constriction and abscission.


Assuntos
Membrana Celular/fisiologia , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , ATPases Associadas a Diversas Atividades Celulares , ATPases Vacuolares Próton-Translocadoras/fisiologia
6.
FEBS Lett ; 585(20): 3191-6, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21924267

RESUMO

The ESCRT (endosomal sorting complex required for transport) pathway promotes the final membrane scission step at the end of cytokinesis, assists viral budding and generates multivesicular bodies (MVBs). These seemingly unrelated processes require a topologically similar membrane deformation and scission event that buds membranes/vesicles out of the cytoplasm. The topology of this budding reaction is 'opposite' to reactions that bud endocytic and secretory vesicles into the cytoplasm. Here we summarize recent findings that help to understand how the ESCRT machinery, in particular the ESCRT-III complex, assembles on its target membranes, executes membrane scission and is disassembled by the AAA-ATPase Vps4.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vesículas Secretórias/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Membrana Celular/genética , Citocinese/fisiologia , Citoplasma/genética , Citoplasma/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Vesículas Secretórias/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Liberação de Vírus/fisiologia , Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...