Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 14(6): 240069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864244

RESUMO

Elongation of very long-chain fatty acid (Elovl) proteins plays pivotal functions in the biosynthesis of the physiologically essential long-chain polyunsaturated fatty acids (LC-PUFA). Polychaetes have important roles in marine ecosystems, contributing not only to nutrient recycling but also exhibiting a distinctive capacity for biosynthesizing LC-PUFA. To expand our understanding of the LC-PUFA biosynthesis in polychaetes, this study conducted a thorough molecular and functional characterization of Elovl occurring in the model organism Platynereis dumerilii. We identify six Elovl in the genome of P. dumerilii. The sequence and phylogenetic analyses established that four Elovl, identified as Elovl2/5, Elovl4 (two genes) and Elovl1/7, have putative functions in LC-PUFA biosynthesis. Functional characterization confirmed the roles of these elongases in LC-PUFA biosynthesis, demonstrating that P. dumerilii possesses a varied and functionally diverse complement of Elovl that, along with the enzymatic specificities of previously characterized desaturases, enables P. dumerilii to perform all the reactions required for the biosynthesis of the LC-PUFA. Importantly, we uncovered that one of the two Elovl4-encoding genes is remarkably long in comparison with any other animals' Elovl, which contains a C terminal KH domain unique among Elovl. The distinctive expression pattern of this protein in photoreceptors strongly suggests a central role in vision.


Assuntos
Elongases de Ácidos Graxos , Ácidos Graxos Insaturados , Filogenia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/biossíntese , Animais , Elongases de Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/genética , Poliquetos/metabolismo , Poliquetos/genética , Acetiltransferases/metabolismo , Acetiltransferases/genética , Anelídeos/genética , Anelídeos/metabolismo
2.
Development ; 147(22)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33033120

RESUMO

The path from a fertilised egg to an embryo involves the coordinated formation of cell types, tissues and organs. Developmental modules comprise discrete units specified by self-sufficient genetic programs that can interact with each other during embryogenesis. Here, we have taken advantage of the different span of embryonic development between two distantly related teleosts, zebrafish (Danio rerio) and medaka (Oryzias latipes) (3 and 9 days, respectively), to explore modularity principles. We report that inter-species blastula transplantations result in the ectopic formation of a retina formed by donor cells - a module. We show that the time taken for the retina to develop follows a genetic program: an ectopic zebrafish retina in medaka develops with zebrafish dynamics. Heterologous transplantation results in a temporal decoupling between the donor retina and host organism, illustrated by two paradigms that require retina-host interactions: lens recruitment and retino-tectal projections. Our results uncover a new experimental system for addressing temporal decoupling along embryonic development, and highlight the presence of largely autonomous but interconnected developmental modules that orchestrate organogenesis.


Assuntos
Blástula , Oryzias/embriologia , Retina/embriologia , Quimeras de Transplante/embriologia , Peixe-Zebra/embriologia , Animais , Blástula/embriologia , Blástula/transplante , Xenoenxertos , Retina/citologia
3.
PLoS One ; 14(3): e0212956, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845151

RESUMO

Fish are ideally suited for in vivo-imaging due to their transparency at early stages combined with a large genetic toolbox. Key challenges to further advance imaging are fluorophore selection, immobilization of the specimen and approaches to eliminate pigmentation. We addressed all three and identified the fluorophores and anaesthesia of choice by high throughput time-lapse imaging. Our results indicate that eGFP and mCherry are the best conservative choices for in vivo-fluorescence experiments, when availability of well-established antibodies and nanobodies matters. Still, mVenusNB and mGFPmut2 delivered highest absolute fluorescence intensities in vivo. Immobilization is of key importance during extended in vivo imaging. Here, traditional approaches are outperformed by mRNA injection of α-Bungarotoxin which allows a complete and reversible, transient immobilization. In combination with fully transparent juvenile and adult fish established by the targeted inactivation of both, oca2 and pnp4a via CRISPR/Cas9-mediated gene editing in medaka we could dramatically improve the state-of-the art imaging conditions in post-embryonic fish, now enabling light-sheet microscopy of the growing retina, brain, gills and inner organs in the absence of side effects caused by anaesthetic drugs or pigmentation.


Assuntos
Microscopia Intravital/métodos , Modelos Animais , Oryzias , Anestesia/métodos , Animais , Animais Geneticamente Modificados , Bungarotoxinas/genética , Sistemas CRISPR-Cas/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Microscopia de Fluorescência/métodos , Pigmentação/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...