Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38060326

RESUMO

Polychlorinated biphenyls (PCBs) are a class of ubiquitous and significant synthetic organic chemicals that pose deleterious threats to the environment and human health. This study examined the concentration, indoor-outdoor and seasonal change, sources, and health effects of PCBs in particulate-bound dust near a scrap iron recycling plant. PCBs levels were determined in samples using gas chromatograph mass spectrometer. The results indicated that 5 Cl atoms PCB constituted the majority of PCBs (41% overall), contributing 43% during the rainy season and 39% during the dry season. Dioxin-like PCBs (DLPCBs) contributed 38% during the rainy season and 33% during the dry season. In addition, DLPCB accounted for 26% and 40% of indoor and outdoor PCB emissions, respectively. Iron and steel production were identified as the highest identified contributing sources, accounting for 76% of PCB emissions in the rainy season, while plastic combustion had the highest contribution in the dry season, accounting for 44% of PCB emissions. Incremental Lifetime Cancer Risk assessment showed ingestion as the main exposure pathway for children and adults during the two seasons (74.42% and 58.24%, respectively), followed by dermal exposure, while inhalation had the least contribution. A multifaced approach involving relevant agencies, the industry, and the community is required to reduce exposure.


Assuntos
Bifenilos Policlorados , Adulto , Criança , Humanos , Bifenilos Policlorados/análise , Estações do Ano , Poluentes Orgânicos Persistentes , Poeira , Medição de Risco , Ferro
2.
Environ Monit Assess ; 195(3): 398, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36787031

RESUMO

The fast-economic development and population growth in Nigeria have resulted in huge quantities of air pollutants emission which have implications on the environment. Detailed sectoral emission inventory to serve as the basis for policy formation to mitigate the condition is still lacking. This study builds detailed sectoral emission inventory using the emission factor approach to estimates various pollutant emissions from different sources. Five major sources of pollutant emissions were identified which include transportation, energy, municipal solid waste, wood fuel, and agricultural sectors. An increasing trend in emissions from 1980 to 2020 was observed for total emission of CO, NOx, PM2.5, PM10, SO2, NH3 and NMVOC in Nigeria that increased from 1 736-6 210; 143-338; 126-551; 171-717; 19-60; 4-28; and 471-1 587 Gg, respectively. Wood fuel, transportation, and municipal waste sectors are the major sources that contributed to 63%, 16%, and 15% of the total CO emission. Three mitigation scenarios for emission reduction for the future were analyzed. CO emission reductions of 38%, 24%, and 38% will be obtained from the liquefied petroleum gas (LPG) intervention, waste to energy (WTE) technology, and vehicle inspection and maintenance (VIM) policy scenarios, respectively, through to the year 2050.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluição do Ar/análise , Nigéria , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Material Particulado/análise
3.
J Environ Health Sci Eng ; 20(1): 315-330, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35669800

RESUMO

Background and Purpose: Exposure to heavy metals (HMs) in indoor dusts is a serious public concern that is linked to a myriad of deleterious health outcomes. The objectives of this study are to estimate the contamination levels of HMs in indoor dusts of different residential areas in Ilorin, Nigeria; identify HMs sources in different residential areas; and evaluate human health risks of HMs in selected residential areas. Methods: Indoor dust sampling was conducted in ten randomly selected from low, medium and high population density residential areas of Ilorin, Nigeria. Ten HMs concentration levels, their health risk implication and the associated potential ecological risks were evaluated. Results: The mean concentration levels measured for Fe, Pb, Zn, As, Co, Cr, Cu, Cd, Mn and Ni were 38.99, 5.74, 3.99, 0.08, 2.82, 2.13, 0.47, 0.60, 6.45 and 1.09 mg/kg, respectively. Positive Matrix Factorization (PMF) model was applied to ascertain sources of HMs in sampled indoor dust. Percentage contribution from oil-based cooking (29.82%) and transportation (29.77%) represented the highest source to HM concentrations among the six factors identified. The results of the various pollution indices employed showed that Pb, Zn, As, Co, Cr, Cu, Mn and Ni contributed moderately to HMs concentration levels in the sampled dusts. Cd had highest potential ecological risk factor E r i of between 160 and 320. The average values of Enrichment Factors (EFs) obtained aside from Fe used as the reference metal, ranged between 8.46 (As) and 2521.61(Cd). Health risk assessment results revealed that children are the most susceptible to the risks associated with HMs bound indoor dust than the adults. The percentage risk contributions of Hazard Quotient via ingestion route (HQing) in Hazard Index (HI) for non-cancer risk of indoor HMs were 93.17% and 69.87% in children and adults, respectively. Likewise, the percentage cancer risks contribution through ingestion pathway (CRing) were higher than cancer risks through inhalation and dermal pathways (CRinh and CRdermal), accounting for 99.84% and 97.04% of lifetime cancer risk in children and adults, respectively. The contamination level of Cd recorded is of great concern and signifies very strong contribution from anthropogenic sources. Conclusion: This study has further revealed the levels of HMs in typical African residential settings that could be used by relevant stakeholders and policy makers in developing lasting control measures. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-021-00778-8.

4.
Environ Sci Pollut Res Int ; 29(29): 44970-44985, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35146606

RESUMO

Road dust is a principal source and depository of polycyclic aromatic hydrocarbons (PAHs) in many urban areas of the world. Hence, this study probed the spatial and seasonal pattern, sources, and related cancer health risks of PAHs in the road dusts sampled at ten traffic intersection (TIs) of a model African city. Mixed PAHs sources were ascertained using the diagnostic ratios and positive matrix factorization (PMF) model. The results showed fluctuations in mean concentrations from 36.51 to 43.04 µg/g. Three-ring PAHs were the most abundant PAHs with anthracene (Anth) ranging from 6.84 ± 1.99 to 9.26 ± 4.42 µg/g being the predominant pollutant in Ibadan. Benzo(k)Fluoranthene (BkF) which is a pointer of traffic emission was the most dominant among the seven carcinogenic PAHs considered, varying from 2.68 ± 0.43 to 4.59 ± 0.48 µg/g. Seasonal variation results showed that PAH concentrations were 20% higher during dry season than rainy season. The seven sources of PAHs identified by PMF model include the following: diesel vehicle exhausts, gasoline combustion, diesel combustion, coal tar combustion, gasoline vehicle exhausts, coal and wood (biomass) combustion, and emissions from unburnt fossil fuels. Employing the incremental lifetime cancer risk (ILCR) model, the city's cancer risk of 5.96E-05 for children and 6.60E-05 for adults were more than the satisfactory risk baseline of ILCR ≤ 10-6 and higher in adults than in Children.


Assuntos
Poluentes Atmosféricos , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Poluentes Atmosféricos/análise , Criança , China , Carvão Mineral , Poeira/análise , Monitoramento Ambiental/métodos , Gasolina , Humanos , Nigéria , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Estações do Ano , Emissões de Veículos/análise
5.
Environ Monit Assess ; 193(12): 777, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34748100

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in recent times on account of their reasonably high environmental burden and extreme toxicity. Samples of indoor dusts were obtained daily over a period of 2 weeks from 10 residences located within low, medium, and high density residential areas of Ilorin City. The concentration levels, potential sources, and cancer health risks of sixteen polycyclic aromatic hydrocarbons (PAHs) were investigated using gas chromatography/mass spectrometry. PAHs total concentrations varied from 3.95 ± 0.19 to 8.70 ± 0.43 µg/g with arithmetic mean of 6.09 ± 0.46 µg/g. Fluoranthene was the most dominant PAHs congener. High molecular weight (HMW) PAHs (4-6 rings) were the most prevalent PAHs and were responsible for 79.29% of total PAHs in sampled residences. Chrysene (Chry) was the most abundant compound among the 7 carcinogenic PAHs (CPAHs). Moreover, diagnostic ratios and positive matrix factorization (PMF) employed to apportion PAHs suggested that indoor dusts originated from indoor activities and infiltrating outdoor air pollutants. Diagnostic ratios revealed that PAHs are from mixed sources which include coal/wood combustion, non-traffic and traffic emissions, petroleum, petrogenic (gasoline), and petroleum combustion. Similarly, positive matrix factorization (PMF) model suggested five sources (factors) were responsible for PAHs in indoor dusts comprised of petroleum combustion and traffic emissions (60.05%), wood and biomass combustion emissions (20.84%), smoke from cooking, incense burning and tobacco (4.17%), gasoline combustion from non-traffic sources (13.89%), and emissions from coal burning and electronic devices (1.05%). The incremental lifetime carcinogenic risks (ILCR) of PAHs in adults and children estimated by applying benzo(a)pyrene (BaP) equivalent were within the satisfactory risk limits in Ilorin. Indoor PAHs emissions in Ilorin residences could be monitored and controlled by using data provided in this study.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Poeira/análise , Monitoramento Ambiental , Humanos , Nigéria , Hidrocarbonetos Policíclicos Aromáticos/análise , Densidade Demográfica , Medição de Risco
6.
J Environ Health Sci Eng ; 19(1): 331-341, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33500782

RESUMO

Cough and sneeze droplets' interactions with indoor air of a typical hospital clinic that could be majorly found in developing African countries were studied to investigate the effectiveness of existing guidelines/protocols being adopted in the control of the widespread coronavirus disease (COVID-19) transmission. The influences of indoor air velocity, the type, size distribution, residence time in air, and trajectory of the droplets, were all considered while interrogating the effectiveness of physical distancing measures, the use of face covers, cautionary activities of the general public, and the plausibility of community spread of the SARS-CoV-2 virus through airborne transmission. Series of 3-D, coupled, discrete phase models (DPM) were implemented in the numerical studies. Based on DPM concentration maps as function of particle positions and particle residence times that were observed under different droplets release conditions, the virus-laden droplets could travel several meters away from the source of release (index patient), with smaller-sized particles staying longer in the air. The behavior of indoor air was also found to indicate complex dynamics as particle transports showed no linear dependence on air velocity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-020-00606-5.

7.
Environ Monit Assess ; 192(12): 758, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184692

RESUMO

Frequent burnings occurring in the grasslands of the West African region during the dry seasons largely contribute to emissions of trace gases and particulates being released into the ambient environment, which has significantly impacted both regional and global climate patterns. Burning potentials of forty different grassland biomes were examined by determining their Net Heating Value (NHV) and Total Organic Carbon (TOC). Simulations of the field operations which involve open burning were performed in the laboratory using a fabricated combustion chamber for the determination of emission factors. Particulates were collected using Whatman quartz fibre filters and analyzed gravimetrically. Emissions of gaseous pollutants from open burning of these common grass species were measured with portable devices. The values of the NHV and TOC of the grass species ranged from 15,022.19 to 18,181.84 kJ/kg and 21.14 to 55.62%, respectively. The average Emission Factors (EFs) obtained for carbon dioxide (CO2), carbon monoxide (CO), sulphur dioxide (SO2), nitrogen dioxide (NO2), volatile organic compounds (VOC), and PM2.5 are 1465.55 g/kg, 40.99 g/kg, 0.39 g/kg, 0.02 g/kg, 7.78 g/kg, and 6.00 g/kg, respectively. The study has shown that Digitaria nuda, Digitaria eriantha, Panicum subalbidum, Paspalum polystratchyum, and Perotis indica have the highest emission factors for CO2, CO, SO2, NO2, VOC, and PM2.5, respectively. The result obtained would help in the quantification of the global warming forcing on the climate in the West African region from grassland burnings. The results will potentially serve as additional information for emission inventories and basis for the formulation of mitigation strategies.


Assuntos
Poluentes Atmosféricos , África Ocidental , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Poaceae , Dióxido de Enxofre
8.
Environ Pollut ; 266(Pt 2): 115169, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32663729

RESUMO

The heating of edible oils during cooking activities promotes the emissions of pollutants that have adverse impacts on the health of humans. This study investigated the evaporative emissions of fifteen (15) commonly used cooking oils. Split-plot experimental design under the response surface methodology framework was used to study singular and interaction effects of influencing parameters (temperature, volume of cooking oil and time) on cooking oil evaporation rate and pollutants emissions (i.e. Particulate matter of aerodynamic diameter ≤1 µm (PM1.0); ≤2.5 µm (PM2.5); ≤10 µm (PM10); Total Suspended Particulate (TSP); Total Volatile Organic Compounds -TVOCs, and Carbon Monoxide- CO) on a groundnut oil sample that served as a case study. Obtained values of density, viscosity, kinematic viscosity, smoke, flash and fire points were; 873-917 kg/m3; 1.12-9.7 kg/ms; 2.4-3.4 m2/s; 96 -100 °C; 124-179 °C and 142-186 °C, respectively. The role of temperature as the most significant parameter influencing the rate of evaporative emissions was established. Evaporation rate and pollutants emission from unrefined samples were the highest. The restricted maximum likelihood (REML) analysis results suggested a strong relationship between the actual values and the predicted values as R-squared values obtained were greater than 0.8 for all the responses. These results suggest that minimal rates of evaporation and pollutants emission from heating cooking oils can be achieved with a high volume of the cooking oil at moderate temperature levels.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Ambientais , Culinária , Monitoramento Ambiental , Humanos , Óleos , Material Particulado/análise
9.
J Environ Health Sci Eng ; 17(1): 13-28, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31297199

RESUMO

A mixture of gases and obnoxious odours are major components of landfill emission. A dispersion modelling on air pollutants and odour emissions anticipated from a proposed Integrated Waste Management Facility was conducted considering five operating scenarios. Impacts of the predicted ground level concentrations of air pollutants (including carbon monoxide, CO; oxides of nitrogen, NOX; sulphur dioxide, SO2; particulate matter, PM and hydrocarbons, HC) and odour on ambient air quality were investigated using the 10-min 1 OU/m3 odour limit, CH4 Lower Explosive Limit (LEL) and the daily limits of CO, NOx, SO2, PM and HC. The anticipated maximum ground level concentration of emitted odour and CH4 are 0.0040 OU/m3 and 0.0349 ppm, respectively. Simultaneous operations of all the major components of the facility will generate the daily maximum concentrations of 7.34, 2.60, 7.31, 29.72 and 0.42 µg/m3, for CO, NOX, SO2, PM and HC, respectively. Generally, the facility impacts on ambient air quality will be within the acceptable limit.

10.
Environ Monit Assess ; 190(9): 495, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30069797

RESUMO

In this paper, nonlinear system identification of the activated sludge process in an industrial wastewater treatment plant was completed using adaptive neuro-fuzzy inference system (ANFIS) and generalized linear model (GLM) regression. Predictive models of the effluent chemical and 5-day biochemical oxygen demands were developed from measured past inputs and outputs. From a set of candidates, least absolute shrinkage and selection operator (LASSO), and a fuzzy brute-force search were utilized in selecting the best combination of regressors for the GLMs and ANFIS models respectively. Root mean square error (RMSE) and Pearson's correlation coefficient (R-value) served as metrics in assessing the predicting performance of the models. Contrasted with the GLM predictions, the obtained modeling results show that the ANFIS models provide better predictions of the studied effluent variables. The results of the empirical search for the dominant regressors indicate the models have an enormous potential in the estimation of the time lag before a desired effluent quality can be realized, and preempting process disturbances. Hence, the models can be used in developing a software tool that will facilitate the effective management of the treatment operation.


Assuntos
Monitoramento Ambiental , Modelos Químicos , Redes Neurais de Computação , Águas Residuárias/estatística & dados numéricos , Poluição Química da Água/estatística & dados numéricos , Lógica Fuzzy , Modelos Lineares , Compostos Orgânicos , Esgotos
11.
Environ Monit Assess ; 190(1): 41, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273920

RESUMO

This study assessed concentration levels of particulate matter (PM) in the ambient environment of Ilorin metropolis, Nigeria, during haze episodes. Meteorological data (wind speed and direction, rainfall data, sunshine data, relative humidity and temperature) were obtained. Aerocet 531S particle counter (MetOne Instruments, USA) was used to measure four mass concentration ranges of PM (PM1.0, PM2.5, PM10 and the total suspended particles (TSP)) in 10 locations taking into consideration land use patterns. Surfer® version 8 (Golden Software LLC, USA) was used to model the spatial variation of particulate matter concentration levels using kriging interpolation griding method. Human exposure assessment was done using the total respiratory deposition dose (TRDD) estimates and statutory limit breach (SLB) approaches. The appearance of dominating weak southern atmospheric wind flow was observed as wind speed ranged from 0 to 6.811 m/s while solar radiation periods ranged from 0.3 to 3.5 h/day. The relative humidity of the metropolis ranged between 28 and 57%, while daily temperature was 15 to 36 °C. Highest concentration levels of PM measured were 73.4, 562.7, 7066.3 and 9907.8 µg/m3 for PM1.0, PM2.5, PM10 and TSP, respectively. Very strong negative correlations existed between the PM concentration levels and microclimatic parameters. Spatial variation of the concentration level as modelled using Surfer® version 8 indicated that particulate concentration level increases from south to north. Concentration levels of PM for the 24-h averaging period were generally above the 24-h threshold limit value set by the regulatory agencies for all the locations.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Poeira/análise , Humanos , Nigéria , Tamanho da Partícula , Estações do Ano , Temperatura , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...