Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 65(7): 100551, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39002195

RESUMO

Intestinal disease is one of the earliest manifestations of cystic fibrosis (CF) in children and is closely tied to deficits in growth and nutrition, both of which are directly linked to future mortality. Patients are treated aggressively with pancreatic enzyme replacement therapy and a high-fat diet to circumvent fat malabsorption, but this does not reverse growth and nutritional defects. We hypothesized that defects in chylomicron production could explain why CF body weights and nutrition are so resistant to clinical treatments. We used gold standard intestinal lipid absorption and metabolism approaches, including mouse mesenteric lymph cannulation, in vivo chylomicron secretion kinetics, transmission electron microscopy, small intestinal organoids, and chylomicron metabolism assays to test this hypothesis. In mice expressing the G542X mutation in cystic fibrosis transmembrane conductance regulator (CFTR-/- mice), we find that defective FFA trafficking across the epithelium into enterocytes drives a chylomicron formation defect. Furthermore, G542X mice secrete small, triglyceride-poor chylomicrons into the lymph and blood. These defective chylomicrons are cleared into extraintestinal tissues at ∼10-fold faster than WT chylomicrons. This defect in FFA absorption resulting in dysfunctional chylomicrons cannot be explained by steatorrhea or pancreatic insufficiency and is maintained in primary small intestinal organoids treated with micellar lipids. These studies suggest that the ultrahigh-fat diet that most people with CF are counselled to follow may instead make steatorrhea and malabsorption defects worse by overloading the absorptive capacity of the CF small intestine.


Assuntos
Quilomícrons , Fibrose Cística , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Fibrose Cística/genética , Animais , Quilomícrons/metabolismo , Camundongos , Ácidos Graxos não Esterificados/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Insuficiência Pancreática Exócrina/metabolismo , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/patologia , Transporte Biológico , Humanos , Mucosa Intestinal/metabolismo
2.
Gut Microbes ; 11(3): 253-264, 2020 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-32005089

RESUMO

Advances in the understanding of the pathogenesis of type 2 diabetes mellitus (T2D) have revealed a role for gut microbiota dysbiosis in driving this disease. This suggests the possibility that approaches to restore a healthy host-microbiota relationship might be a means of ameliorating T2D. Indeed, recent studies indicate that many currently used treatments for T2D are reported to impact gut microbiota composition. Such changes in gut microbiota may mediate and/or reflect the efficacy of these interventions. This article outlines the rationale for considering the microbiota as a central determent of development of T2D and, moreover, reviews evidence that impacting microbiota might be germane to amelioration of T2D, both in terms of understanding mechanisms that mediate efficacy of exiting T2D therapies and in developing novel treatments for this disorder.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/prevenção & controle , Fibras na Dieta/uso terapêutico , Disbiose , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Preparações de Plantas/uso terapêutico , Probióticos/administração & dosagem
3.
Cell Mol Gastroenterol Hepatol ; 9(2): 313-333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31593782

RESUMO

BACKGROUND & AIMS: Consumption of a low-fiber, high-fat, Western-style diet (WSD) induces adiposity and adipose inflammation characterized by increases in the M1:M2 macrophage ratio and proinflammatory cytokine expression, both of which contribute to WSD-induced metabolic syndrome. WSD-induced adipose inflammation might result from endoplasmic reticulum stress in lipid-overloaded adipocytes and/or dissemination of gut bacterial products, resulting in activation of innate immune signaling. Hence, we aimed to investigate the role of the gut microbiota, and its detection by innate immune signaling pathways, in WSD-induced adipose inflammation. METHODS: Mice were fed grain-based chow or a WSD for 8 weeks, assessed metabolically, and intestinal and adipose tissue were analyzed by flow cytometry and quantitative reverse transcription polymerase chain reaction. Microbiota was ablated via antibiotics and use of gnotobiotic mice that completely lacked microbiota (germ-free mice) or had a low-complexity microbiota (altered Schaedler flora). Innate immune signaling was ablated by genetic deletion of Toll-like receptor signaling adaptor myeloid differentiation primary response 88. RESULTS: Ablation of microbiota via antibiotic, germ-free, or altered Schaedler flora approaches did not significantly impact WSD-induced adiposity, yet dramatically reduced WSD-induced adipose inflammation as assessed by macrophage populations and cytokine expression. Microbiota ablation also prevented colonic neutrophil and CD103- dendritic cell infiltration. Such reduced indices of inflammation correlated with protection against WSD-induced dysglycemia, hypercholesterolemia, and liver dysfunction. Genetic deletion of myeloid differentiation primary response 88 also prevented WSD-induced adipose inflammation. CONCLUSIONS: These results indicate that adipose inflammation, and some aspects of metabolic syndrome, are not purely a consequence of diet-induced adiposity per se but, rather, may require disturbance of intestine-microbiota interactions and subsequent activation of innate immunity.


Assuntos
Tecido Adiposo/imunologia , Adiposidade/imunologia , Dieta Ocidental/efeitos adversos , Microbioma Gastrointestinal/imunologia , Síndrome Metabólica/imunologia , Adipócitos/imunologia , Adipócitos/metabolismo , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/imunologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Macrófagos/imunologia , Masculino , Síndrome Metabólica/microbiologia , Camundongos , Transdução de Sinais
4.
Am J Physiol Endocrinol Metab ; 317(6): E1121-E1130, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573841

RESUMO

Metformin beneficially impacts several aspects of metabolic syndrome including dysglycemia, obesity, and liver dysfunction, thus making it a widely used frontline treatment for early-stage type 2 diabetes, which is associated with these disorders. Several mechanisms of action for metformin have been proposed, including that it acts as an anti-inflammatory agent, possibly as a result of its impact on intestinal microbiota. In accord with this possibility, we observed herein that, in mice with diet-induced metabolic syndrome, metformin impacts the gut microbiota by preventing its encroachment upon the host, a feature of metabolic syndrome in mice and humans. However, the ability of metformin to beneficially impact metabolic syndrome in mice was not markedly altered by reduction or elimination of gut microbiota, achieved by the use of antibiotics or germfree mice. Although reducing or eliminating microbiota by itself suppressed diet-induced dysglycemia, other features of metabolic syndrome including obesity, hepatic steatosis, and low-grade inflammation remained suppressed by metformin in the presence or absence of gut microbiota. These results support a role for anti-inflammatory activity of metformin, irrespective of gut microbiota, in driving some of the beneficial impacts of this drug on metabolic syndrome.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Síndrome Metabólica/metabolismo , Metformina/farmacologia , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Hiperglicemia/metabolismo , Hiperglicemia/microbiologia , Inflamação/microbiologia , Fígado/metabolismo , Síndrome Metabólica/microbiologia , Camundongos , Neomicina/farmacologia , Obesidade/metabolismo , Obesidade/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...