Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 405(4): 892-908, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21110982

RESUMO

Transposases are proteins that have assumed the mobility of class II transposable elements. In order to map the interfaces involved in transposase-transposase interactions, we have taken advantage of 12 transposase mutants that impair mariner transposase-transposase interactions taking place during transposition. Our data indicate that transposase-transposase interactions regulating Mos1 transposition are sophisticated and result from (i) active MOS1 dimerization through the first HTH of the N-terminal domain, which leads to inverted terminal repeat (ITR) binding; (ii) inactive dimerization carried by part of the C-terminal domain, which prevents ITR binding; and (iii) oligomerization. Inactive dimers are nonpermissive in organizing complexes that produce ITR binding, but the interfaces (or interactions) supplied in this state could play a role in the various rearrangements needed during transposition. Oligomerization is probably not due to a specific MOS1 domain, but rather the result of nonspecific interactions resulting from incorrect folding of the protein. Our data also suggest that the MOS1 catalytic domain is a main actor in the overall organization of MOS1, thus playing a role in MOS1 oligomerization. Finally, we propose that MOS1 behaves as predicted by the pre-equilibrium existing model, whereby proteins are found to exist simultaneously in populations with diverse conformations, monomers and active and inactive dimers for MOS1. We were able to identify several MOS1 mutants that modify this pre-existing equilibrium. According to their properties, some of these mutants will be useful tools to break down the remaining gaps in our understanding of mariner transposition.


Assuntos
Proteínas de Ligação a DNA/química , Transposases/química , Sequência de Aminoácidos , Domínio Catalítico , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estrutura Quaternária de Proteína , Sequências Repetidas Terminais , Transposases/genética , Transposases/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
Genetica ; 137(3): 265-76, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19533383

RESUMO

Mariner transposons are probably the most widespread transposable element family in animal genomes. To date, they are believed not to require species-specific host factors for transposition. Despite this, Mos1, one of the most-studied mariner elements (with Himar1), has been shown to be active in insects, but inactive in mammalian genomes. To circumvent this problem, one strategy consists of both enhancing the activity of the Mos1 transposase (MOS1), and making it insensitive to activity-altering post-translational modifications. Here, we report rational mutagenesis studies performed to obtain hyperactive and non-phosphorylable MOS1 variants. Transposition assays in bacteria have made it possible to isolate numerous hyperactive MOS1 variants. The best mutant combinations, named FETY and FET, are 60- and 800-fold more active than the wild-type MOS1 version, respectively. However, there are serious difficulties in using them, notably because they display severe cytotoxicity. On the other hand, three positions lying within the HTH motif, T88, S99, and S104 were found to be sensitive to phosphorylation. Our efforts to obtain active non-phosphorylable mutants at S99 and S104 positions were unsuccessful, as these residues, like the co-linear amino acids in their close vicinity, are critical for MOS1 activity. Even if host factors are not essential for transposition, our data demonstrate that the host machinery is essential in regulating MOS1 activity.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Mutagênese Insercional/genética , Mutagênese Insercional/métodos , Engenharia de Proteínas/métodos , Transposases/fisiologia , Motivos de Aminoácidos/genética , Calibragem , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/genética , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Engenharia de Proteínas/normas , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética , Transposases/genética , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...