Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2022: 6032511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655487

RESUMO

Ficus exasperata has been used to treat ulcer, diabetes, fever, and a variety of stress-related disorders. Acetaminophen (APAP) overdose is the most common cause of drug-induced acute liver injury. In this study, we evaluated the hepatoprotective effect and antioxidant capacity of ethanolic extract of F. exasperata (EFE) on acetaminophen-induced hepatotoxicity in albino rats. Rats were pretreated with EFE (150, 250, 500 mg/kg) and thereafter received 250 mg/kg APA intraperitoneally (i.p.). The normal control group received distilled water, while the negative control group received 250 mg/kg APAP, respectively. Hepatotoxicity and oxidative stress-antioxidant parameters were then assessed. Flavonoids, saponins, steroids, and glycosides, but not phenolics were detected by EFE phytochemical analysis. No mortality was recorded on acute exposure of rats to varying concentrations of APAP after 24 h; however, a dose-dependent increase in severity of convulsion, urination, and hyperactivity was observed. APAP overdose induced high AST, ALT, ALP, and total bilirubin levels in the serum, invoked lipid peroxidation, depleted GSH, decreased CAT, SOD, and GST levels, respectively. Nitric oxide (NO) level, myeloperoxidase activity, TNF-α, IL-1ß, NF-κB, COX-2, MCP-1, and IL-6 were also increased. Importantly, pretreatment of rats with EFE before acetaminophen ameliorated and restored cellular antioxidant status to levels comparable to the control group. Our results show and suggest the hepatoprotective effect of F. exasperata and its ability to modulate cellular antioxidant status supports its use in traditional medicine and renders it safe in treating an oxidative stress-induced hepatic injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ficus , Acetaminofen/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , NF-kappa B , Ratos
2.
Biochem Res Int ; 2022: 4613109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620201

RESUMO

Methods: Phytochemical screening, antioxidant activity, α-amylase, and α-lipase inhibitory assessment were carried out on Moringa oleifera extract. Results: The result of the phytochemical screening revealed the presence of total phenolic, flavonoid, tannin, and alkaloid contents of values 0.070 ± 0.005 mg gallic acid equivalent/g, 0.180 ± 0.020 mg rutin equivalent/g, 0.042 ± 0.001 mg tannic equivalent/g, and 12.17 ± 0.001%, respectively, while the total protein analysis was 0.475 ± 0.001 mg bovine serum albumin equivalent/g. Ferric reducing antioxidant power (FRAP) and total antioxidant capacity (TAC) values were 0.534 ± 0.001 mg gallic acid equivalent/g and 0.022 ± 0.00008 mg rutin equivalent/g, respectively. Diphenyl-2-picrylhydrazyl (DPPH), ABTS (2,2'-azino-bis (ethylbenzothiazoline-6-sulfonic acid)), and nitric oxide (NO) assays showed the extract to have a strong free radical scavenging activity. The 50% inhibitory concentration (IC50) values of the lipase and amylase activities of the extract are 1.0877 mg/mL and 0.1802 mg/mL, respectively. Conclusion: However, α-lipase and α-amylase inhibiting activity of M. oleifera could be related to the phytochemicals in the extract. This research validates the ethnobotanical use of M. oleifera leaves as an effective plant-based therapeutic agent for diabetes and obesity.

3.
Front Nutr ; 8: 629440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322507

RESUMO

Coronavirus disease (COVID-19) is a global health challenge, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) triggers a plethora of respiratory disturbances and even multiple organs failure that can be fatal. Nutritional intervention is one of the key components toward to a proper management of COVID-19 patients, especially in those requiring medication, and should thus be considered the first-line treatment. Immuno-modulation and -stimulation are currently being explored in COVID-19 management and are gaining interest by food and pharmaceutical industries. Various dietary combinations, bioactive components, nutrients and fortified foods have been reported to modulate inflammation during disease progression. Dietary combinations of dairy-derived products and eggs are gaining an increasing attention given the huge immunomodulatory and anti-inflammatory properties attributed to some of their chemical constituents. Eggs are complex dietary components containing many essential nutrients and bioactive compounds as well as a high-quality proteins. Similarly, yogurts can replenish beneficial bacteria and contains macronutrients capable of stimulating immunity by enhancing cell immunity, reducing oxidative stress, neutralizing inflammation and regulating the intestinal barriers and gut microbiome. Thus, this review highlights the impact of nutritional intervention on COVID-19 management, focusing on the immunomodulatory and inflammatory effects of immune-enhancing nutrients.

4.
J Food Biochem ; 45(4): e13660, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624846

RESUMO

This study examined the protective effect of 6-Gingerol (6G) against lipopolysaccharide (LPS)-induced cognitive impairments, oxidative stress, neuroplasticity, amyloidogenesis, and inflammation. Male rats were allocated into six groups in this manner; Group I placed on normal saline only. Group II was treated for 7 days with LPS alone intraperitoneally at 250 µg/kg body weight (bw). Group III received 6G alone at 50 mg/kg bw orally for 14 days. Groups IV and V received 6G at 20 and 50 mg/kg bw for 7 days, respectively, and LPS for another 7 days to induce neurotoxicity. Group VI received 5 mg/kg bw of donepezil for 7 days and LPS for 7 days. Pretreatment with 20 and 50 mg/kg bw of 6G protected against LPS-mediated learning and memory function, and also locomotor and motor deficits. Besides, 20 and 50 mg/kg bw 6G mitigated LPS-induced alteration in markers of oxidative stress. Furthermore, induction of amyloidogenesis associated with disruption of histoarchitecture and high expression of interleukin 1ß, inducible nitric oxide synthase, amyloid precursor protein (APP), ß-secretase 1, and brain-derived neurotrophic factor by LPS was mitigated by the two doses of 6G in the rat hippocampus and cerebral cortex region of the brain. 6G pretreatment at the two doses mitigated LPS-mediated histopathological changes in the hippocampus and cerebral cortex of rats. Overall, our results demonstrate that the protective effect of 6G is mediated through the reversal of neurobehavioral deficit, oxidative stress, inflammation, and amyloidogenesis, thus making 6G a possible chemoprophylactic agent against brain injury as a result of LPS exposure. PRACTICAL APPLICATIONS: In the search for a holistic prevention of inflammation-associated neurodegeneration, nutraceuticals are becoming prominent. Hence, this study presents 6G, an active constituent of ginger, as a chemoprotective, antioxidant, and anti-inflammatory agent, which is able to ameliorate cognitive impairments, oxidative stress, neuroplasticity, amyloidogenesis, and inflammation in LPS-induced rat model of neuroinflammation.


Assuntos
Disfunção Cognitiva , Zingiber officinale , Animais , Catecóis , Cognição , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Álcoois Graxos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Masculino , Plasticidade Neuronal , Ratos
5.
Biology (Basel) ; 9(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992510

RESUMO

The majority of liver-related illnesses are caused by occupational and domestic exposure to toxic chemicals like formaldehyde (FA), which is widely common in Africa and the world at large. Hence, measures should be taken to protect humans from its hazardous effects. This study, therefore, examines the protective potential of Ganoderma lucidum (100 mg/kg body weight) on formaldehyde-induced (40%) liver oxido-inflammation in male rats. Male Wistar rats, 150-200 g, were allotted into four groups of 10 animals as follows: Group 1 was orally treated with 1 mg/mL distilled water, Group 2 was exposed to a 40% formaldehyde vapor environment for 30 min per day, Group 3 was orally treated with 100 mg/kg ethanol extract of Ganoderma lucidum, and Group 4 was co-administered formaldehyde and 100 mg/kg ethanol extract of Ganoderma lucidum. Rats were then sacrificed 24 h after administering the last dose of treatment, and the livers were excised. Ganoderma lucidum significantly reversed the formaldehyde-mediated reduction in body and organ weight. Ganoderma lucidum administration significantly prevented oxido-inflammation by reducing the levels of hydrogen peroxide and malondialdehyde and increasing the activity of antioxidant enzymes and glutathione contents, as well as the normal level of nitrite and myeloperoxidase production in FA-treated rats. Additionally, Ganoderma lucidum reversed a large decline in proinflammatory markers in formaldehyde. Furthermore, Ganoderma lucidum restores formaldehyde-induced histological alterations in the liver. Collectively, our results provide valuable information on the protective potential of Ganoderma lucidum in protecting formaldehyde-induced liver oxido-inflammation in male rats.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32774420

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has become notorious globally. Increasingly emerging evidence shows that NAFLD is strongly associated with inflammation, with proinflammatory cytokines such as interleukin-2 (IL-2), interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α) playing a vital role in its progression. In this work, an attempt was made to verify the anti-inflammatory activity of Ruzu herbal bitters (RHB), an antiobesity medicinal concoction, on NAFLD induced by a high-fat diet (HFD) in albino Wistar rats. Twenty-five (25) rats were divided into five groups as follows: Group 1, the normal control, was maintained on standard rat chow and received normal saline (1 ml/kg body weight (BW)/day) for twelve weeks. The other groups were maintained on HFD for twelve weeks. Thereafter, groups 2-5 were treated with pioglitazone (4 mg/kg BW/day), RHB (0.6 ml/kg BW/day), normal saline (1 ml/kg BW/day), and fenofibrate (10 mg/kg BW/day), respectively. The animals were sacrificed after the experimental period. Biochemical indicators of oxidative stress and inflammation were assayed in the liver according to standard methods. The histological features of the liver were also compared to assess liver damage. RHB significantly (p < 0.05) reduced body weight and liver index, inhibited oxidative stress, boosted antioxidant enzymes by increasing the activity and level of SOD and GSH, reduced proinflammatory markers (IL-2, IL-6, TNF-α), and reversed histological alterations induced by NAFLD in rat liver. In conclusion, the anti-inflammatory activity of RHB in the prevention of NAFLD in rats has been confirmed.

7.
Afr J Reprod Health ; 24(s1): 142-153, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34077063

RESUMO

The Coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China and spread around the world. As of 19 June 2020 data from the World Health Organization (WHO) have shown that more than 8457305 confirmed cases have been identified in more than 200 countries, with the number of cases cutting across all continents. On 30th January 2020, the WHO declared COVID-19 as the sixth public health emergency of international concern. Genomic analysis revealed that SARS-CoV-2 is phylogenetically related to severe acute respiratory syndrome-like (SARS-like) bat viruses; therefore, bats could be the possible primary reservoir. The intermediate source of origin and transfer to humans is not known, however, the rapid human-to-human transfer has been confirmed widely via droplets or direct contact, and infection has been estimated to have mean incubation period of 6.4 days. Currently, controlling infection to prevent the spread of SARS-CoV-2 is the primary intervention being used. However, public health authorities should keep monitoring the situation closely, as the more we can learn about this novel virus and its associated outbreak, the better we can respond.


Assuntos
COVID-19/epidemiologia , COVID-19/fisiopatologia , Antivirais/uso terapêutico , COVID-19/prevenção & controle , COVID-19/terapia , Cloroquina , Controle de Doenças Transmissíveis/organização & administração , Surtos de Doenças , Humanos , Hidroxicloroquina/uso terapêutico , Medicina Tradicional Chinesa/métodos , SARS-CoV-2 , Organização Mundial da Saúde
8.
Artigo em Inglês | MEDLINE | ID: mdl-30864424

RESUMO

Background Acrylonitrile (AN) is a neurotoxin that is widely used to manufacture synthetic fibres, plastics and beverage containers. Recently, we reported the ameliorative role of 6-gingerol-rich fraction from Zingiber officinale (Ginger, GRF) on the chlorpyrifos-induced toxicity in rats. Here, we investigated the protective role of GRF on AN-induced brain damage in male rats. Methods Male rats were orally treated with corn oil (2 mL/kg, control), AN (50 mg/kg, Group B), GRF (200 mg/kg, Group C), AN [50 mg/kg+GRF (100 mg/kg) Group D], AN [(50 mg/kg)+GRF (200 mg/kg) Group E] and AN [(50 mg/kg)+N-acetylcysteine (AC, 50 mg/kg) Group F] for 14 days. Then, we assessed the selected markers of oxidative damage, antioxidant status and inflammation in the brain of rats. Results The results indicated that GRF restored the AN-induced elevations of brain malondialdehyde (MDA), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and Nitric Oxide (NO) levels. GRF also prevented the AN-induced depletion of brain glutathione (GSH) level and the activities of Glutathione S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in rats (p<0.05). Furthermore, GRF prevented the AN-induced cerebral cortex lesion and increased brain immunohistochemical expressions of Caspases-9 and -3. Conclusions Our data suggest that GRF may be a potential therapeutic agent in the treatment of AN-induced model of brain damage.


Assuntos
Acrilonitrila/farmacologia , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Neuroproteção/efeitos dos fármacos , Zingiber officinale/química , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...